Đại số lớp 7

TA

cho 3 số dương \(0\le a\le b\le c\le1\).CMR:

\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\)

H24
24 tháng 10 2019 lúc 10:51

P/s: Bạn nào đang cần thì tham khảo bài này nhé, cô mình chữa rồi.

Bổ sung ĐK: \(\left\{{}\begin{matrix}a< b+c\\b< a+c\\c< a+b\end{matrix}\right.\)

Có: \(0\le a\le b\le1\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\ge0\\ \Rightarrow1-b-a+ab\ge0\\ \Rightarrow ab+1\ge a+b\\ \Rightarrow\frac{c}{ab+1}\le\frac{c}{a+b}\left(\text{vì }c\ge0\right)\)

CMTT ta được \(\frac{a}{bc+1}\le\frac{a}{b+c}\\ \frac{b}{ac+1}\le\frac{b}{a+c}\)

\(\Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\le\frac{a+a}{b+c+a}+\frac{b+b}{a+c+b}+\frac{c+c}{a+b+c}\\ \Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2a+2b+2c}{a+b+c}\\ \Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TH
Xem chi tiết
TN
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
DQ
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết