Đại số lớp 7

HT

cho 2(x+y) = 5(y+z) = 3(x+z) chứng minh \(\frac{x-y}{4}=\frac{y-z}{5}\)

SG
12 tháng 10 2016 lúc 20:20

Ta có: 2.(x + y) = 5.(y + z) = 3.(x + z)

\(\Rightarrow\frac{2.\left(x+y\right)}{30}=\frac{5.\left(y+z\right)}{30}=\frac{3.\left(x+z\right)}{30}\)

\(\Rightarrow\frac{x+y}{15}=\frac{y+z}{6}=\frac{x+z}{10}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x+y}{15}=\frac{y+z}{6}=\frac{x+z}{10}=\frac{\left(x+z\right)-\left(y+z\right)}{10-6}=\frac{\left(x+y\right)-\left(x+z\right)}{15-10}\)

                             \(=\frac{x-y}{4}=\frac{y-z}{5}\left(đpcm\right)\)

Bình luận (1)
NV
27 tháng 11 2016 lúc 15:20

Vì 5 (y + z) = 3 (z + x) \(\Rightarrow\) \(\frac{z+x}{5}=\frac{y+z}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{z+x}{5}=\frac{y+z}{3}=\frac{z+x-y-z}{5-3}=\frac{x-y}{2}\)

Do đó: \(\frac{z+x}{5}=\frac{x-y}{2}\Rightarrow\frac{z+x}{10}=\frac{x-y}{4}\left(1\right)\)

Ta lại có: 2 (x + y) = 3 (z + x)

\(\Rightarrow\) \(\frac{z+x}{2}=\frac{x+y}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{z+x}{2}=\frac{x+y}{3}=\frac{z+x-x-y}{2-3}=y-x\)

Do đó: \(\frac{z+x}{2}=y-z\Rightarrow\frac{z+x}{10}=\frac{y-z}{5}\left(2\right)\)

Từ (1) và (2) suy ra: \(\frac{x-y}{4}=\frac{y-z}{5}\) (đpcm)

Bình luận (0)

Các câu hỏi tương tự
PT
Xem chi tiết
HA
Xem chi tiết
NT
Xem chi tiết
NH
Xem chi tiết
NT
Xem chi tiết
TD
Xem chi tiết
TV
Xem chi tiết
NT
Xem chi tiết
CT
Xem chi tiết