Chương II - Hàm số bậc nhất

DT

cho \(1< x< 2\) . tìm GTNN của biểu thức:

\(S=\dfrac{1}{\left(x-1\right)^2}+\dfrac{1}{\left(2-x\right)^2}+\dfrac{1}{\left(x-1\right)\left(2-x\right)}\)

PA
17 tháng 2 2018 lúc 17:03

Áp dụng bất đẳng thức AM - GM, ta có:

\(S=\dfrac{1}{\left(x-1\right)^2}+\dfrac{1}{\left(2-x\right)^2}+\dfrac{1}{\left(x-1\right)\left(2-x\right)}\)

\(\ge3\sqrt[3]{\dfrac{1}{\left(x-1\right)^2}\times\dfrac{1}{\left(2-x\right)^2}\times\dfrac{1}{\left(x-1\right)\left(2-x\right)}}\)

\(=\dfrac{3}{\left(x-1\right)\left(x-2\right)}=\dfrac{3}{-x^2+3x-2}\)

\(-x^2+3x-2=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

nên \(S\ge\dfrac{3}{\dfrac{1}{4}}=12\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\dfrac{1}{\left(x-1\right)^2}=\dfrac{1}{\left(2-x\right)^2}=\dfrac{1}{\left(x-1\right)\left(2-x\right)}\\x-\dfrac{3}{2}=0\end{matrix}\right.\)

\(\Leftrightarrow x=\dfrac{3}{2}\left(\text{ nhận }\right)\)

Vậy \(Min_S=12\Leftrightarrow x=\dfrac{3}{2}\)

Bình luận (0)

Các câu hỏi tương tự
TP
Xem chi tiết
NT
Xem chi tiết
TT
Xem chi tiết
VQ
Xem chi tiết
TT
Xem chi tiết
NK
Xem chi tiết
TT
Xem chi tiết
VT
Xem chi tiết
TH
Xem chi tiết