Chương 1: KHỐI ĐA DIỆN

NP

Câu 1 : Tính thể tích V của khối chóp S.ABCD có đáy ABCD là hình vuông , cạnh a . Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy

A. V = \(\frac{2}{3}a^3\) B. V = \(\frac{1}{6}a^3\sqrt{3}\) C. V = \(\frac{1}{3}a^3\) D. V = \(\frac{1}{2}a^3\sqrt{3}\)

Câu 2 : Tính thể tích V của khối chóp tứ giác đều có cạnh đáy bằng a và chiều cao bằng 3a ?

A. V = 3a3 B. V = 2a3 C. V = a3 D. V = \(a^3\sqrt{3}\)

Câu 3 : Tính thể tích V của khối chóp tứ giác đều có cạnh đáy bằng 2a và mặt bên tạo với mặt đáy một góc 450

A. V = \(4\sqrt{3}a^3\) B. V = 2a3 C. V = \(\frac{a\sqrt{3}}{3}a^3\) D. V = \(\frac{4}{3}a^3\)

Câu 4 : Cho hình chóp S.ABC , ABC là tam giác vuông tại B , \(SA\perp\left(ABC\right)\) ; H , K tương ứng là hình

chiếu vuông góc của A lên SB , SC . Tính thể tích khối chóp S.AHK biết SA = SB = a và BC = \(a\sqrt{3}\)

A. V = \(\frac{\sqrt{3}}{6}a^3\) B. V = \(\frac{\sqrt{3}}{2}a^3\) C. V = \(\frac{\sqrt{3}}{60}a^3\) D. V = \(\frac{\sqrt{3}}{24}a^3\)

NL
4 tháng 8 2020 lúc 12:19

1.

Gọi H là trung điểm AB \(\Rightarrow SH\perp\left(ABCD\right)\)

\(SH=\frac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều cạnh a)

\(V=\frac{1}{3}SH.S_{ABCD}=\frac{1}{3}.\frac{a\sqrt{3}}{2}.a^2=\frac{a^3\sqrt{3}}{6}\)

2.

\(V=\frac{1}{3}.3a.a^2=a^3\)

3.

Gọi chóp là S.ABCD với O là tâm đáy và M là trung điểm AB

\(\Rightarrow\left\{{}\begin{matrix}SO\perp\left(ABCD\right)\\\widehat{SMO}=45^0\end{matrix}\right.\) \(\Rightarrow SO=OM=a\)

\(V=\frac{1}{3}SO.AB^2=\frac{1}{3}a.4a^2=\frac{4a^3}{3}\)

Bình luận (0)
NL
4 tháng 8 2020 lúc 12:23

4.

\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\BC\perp AB\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)

\(\Rightarrow BC\perp AH\)

\(AH\perp SB\Rightarrow AH\perp\left(SBC\right)\Rightarrow AH\perp SC\)

Lại có \(AK\perp SC\)

\(\Rightarrow SC\perp\left(AKH\right)\Rightarrow SK\) là đường cao của chóp S.AHK ứng với đáy là tam giác AHK vuông tại H (do \(AH\perp\left(SBC\right)\Rightarrow AH\perp HK\))

Áp dụng hệ thức lượng:

\(\frac{1}{AH^2}=\frac{1}{SA^2}+\frac{1}{AB^2}=\)

À thôi đến đây phát hiện ra đề bài sai

\(SA\perp\left(ABC\right)\Rightarrow SA\perp AB\Rightarrow\) tam giác SAB vuông tại A với SA là cạnh góc vuông, SB là cạnh huyền

\(\Rightarrow SB>SA\Rightarrow SB=SA=a\) là hoàn toàn vô lý

Bình luận (0)

Các câu hỏi tương tự
NM
Xem chi tiết
PG
Xem chi tiết
PT
Xem chi tiết
PK
Xem chi tiết
LS
Xem chi tiết
PT
Xem chi tiết
TC
Xem chi tiết
TT
Xem chi tiết
DN
Xem chi tiết