Đại số lớp 7

TM

Câu 1: Tìm số tụ nhiên n để \(2n^2-n+2⋮2n+1\)

Câu 2: Cho đa thức f(x) thỏa mãn điều kiện:

(x-2013) . f(x) = (x-2014) . f(x-2012)

Chứng minh rằng f(x) có ít nhất 2 nghiệm.

Câu 3: Tìm 2 số tự nhiên x, y sao cho: \(5^x+1=2^y\)

HQ
3 tháng 4 2017 lúc 18:02

Câu 1:

Ta có:

\(\left(2n^2-n+2\right)\div\left(2n+1\right)=n-1+\dfrac{3}{2n+1}\)

Để \(\left(2n^2-n+2\right)⋮\left(2n+1\right)\)

Thì \(3⋮2n+1\) Hay \(2n+1\inƯ\left(3\right)\)

\(Ư\left(3\right)=\left\{\pm1;\pm3\right\}\)

Vậy \(n=\left\{-2;-1;0;1\right\}\)

Câu 2:

Thay \(x=2013\) vào đẳng thức ta có:

\(\left(2013-2013\right).f\left(2013\right)=\left(2013-2014\right).f\left(2013-2012\right)\)

\(\Rightarrow f\left(1\right)=0\)

\(\Rightarrow x=1\) là một nghiệm của đa thức \(f\left(x\right)\)

Thay \(x=2014\) vào đẳng thức ta có:

\(\left(2014-2013\right).f\left(2014\right)=\left(2014-2014\right).f\left(2014-2012\right)\)

\(\Rightarrow f\left(2014\right)=0\)

\(\Rightarrow x=2014\) là một nghiệm của đa thức \(f\left(x\right)\)

Vậy đa thức \(f\left(x\right)\) có ít nhất 2 nghiệm \(x=1;x=2014\)

Câu 3:

Ta có:

\(5\equiv1\) (\(mod\) \(4\)) \(\Rightarrow5^x\equiv1\) (\(mod\) \(4\))

\(\Rightarrow5^x+1\equiv2\) (\(mod\) \(4\)) \(\Rightarrow y=1\)

Thay vào đẳng thức trên ta có:

\(5^x+1=2\Rightarrow5^x=1\Rightarrow x=0\)

Vậy \(\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)

Bình luận (2)

Các câu hỏi tương tự
BD
Xem chi tiết
ST
Xem chi tiết
NL
Xem chi tiết
NA
Xem chi tiết
TJ
Xem chi tiết
QN
Xem chi tiết
QN
Xem chi tiết
TN
Xem chi tiết
NA
Xem chi tiết