Bài 1: Giới hạn của dãy số

VN

Câu 1: Cho dãy số \(\left(u_n\right)\) với \(u_n\)=\(\sqrt{2}+\left(\sqrt{2}\right)^2+...+\left(\sqrt{2}\right)^n\),với mọi n. Tính lim\(u_n\)

Câu 2: lim \(\frac{8n+sinn}{4n+3}\)

Câu 3: lim \(\left(\frac{n^2-n}{1-2n^2}+\frac{2sinn^2}{\sqrt{n}}\right)\)

Câu 4: lim \(\frac{1+2+3+...+n}{n^2+2}\)

Câu 5: lim \(\frac{1-3n-5n^2}{cosn+n^2}\)

NT
22 tháng 1 2020 lúc 20:21

Câu 1.

\(\sqrt{2},\left(\sqrt{2}\right)^2,...,\left(\sqrt{2}\right)^n\) lập thành cấp số nhân có \(u_1=\sqrt{2}=q\) nên

\({u_n} = \sqrt 2 .\dfrac{{1 - {{\left( {\sqrt 2 } \right)}^n}}}{{1 - \sqrt 2 }} = \left( {2 - \sqrt 2 } \right)\left[ {{{\left( {\sqrt 2 } \right)}^n} - 1} \right] \to \lim {u_n} = + \infty \)\(\left\{{}\begin{matrix}a=2-\sqrt{2}>0\\q=\sqrt{2}>1\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
22 tháng 1 2020 lúc 20:25

Câu 3.

Ta có biến đổi:

\(\lim \left( {\dfrac{{{n^2} - n}}{{1 - 2{n^2}}} + \dfrac{{2\sin {n^2}}}{{\sqrt n }}} \right) = \lim \dfrac{{{n^2} - n}}{{1 - 2{n^2}}} = \dfrac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
22 tháng 1 2020 lúc 20:27

Câu 4.

\(\lim \dfrac{{1 + 2 + 3 + ... + n}}{{{n^2} + 2}} = \lim \dfrac{{n\left( {n + 1} \right)}}{{2\left( {{n^2} + 2} \right)}} = \dfrac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NC
Xem chi tiết
JJ
Xem chi tiết
KM
Xem chi tiết
VN
Xem chi tiết
NT
Xem chi tiết
DH
Xem chi tiết
DH
Xem chi tiết
JE
Xem chi tiết
JE
Xem chi tiết