Ôn tập toán 6

MT

Câu 1: a. Tìm n để n2 + 2006 là một số chính phương

b. Cho n là số nguyên tố lớn hơn 3. Hỏi n2 + 2006 là số nguyên tố lớn hơn hay là hợp số

Câu 2: a. Cho a, b, n \(\in\) N*. Hãy so sánh \(\dfrac{a+n}{b+n}\)\(\dfrac{a}{b}\)

b. Cho A= \(\dfrac{10^{11}-1}{10^{12}-1};\) B= \(\dfrac{10^{10}+1}{10^{11}+1}\). So sánh A và B.

Câu 3: Cho 10 số tự nhiên bất kì : a1, a2,..., a10. Chứng minh rằng thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia cho 10

NH
29 tháng 5 2017 lúc 10:10

Bài 1 : tham khảo trong đây nè!!

Câu hỏi của Hoàng Nguyễn Xuân Dương - Toán lớp 6 - Học toán với OnlineMath

Bình luận (0)
MY
29 tháng 5 2017 lúc 11:07

Câu 1 :

a. Giả sử n2 + 2006 là số chính phương khi đó ta đặt n2 + 2006 = a2 ( a \(\in\) z ) \(\Leftrightarrow\) a2 - n2 = 2006 \(\Leftrightarrow\) ( a - n ) ( a + n ) = 2006 (*)

+ Thấy : Nếu a,n khác tính chất chẵn lẻ thì vế trái của (*) là số lẻ nên không thỏa mãn (*)

+ Nếu a,n cùng tính chất chẵn hoặc lẻ thì (a-n) chia hết 2 và (a+n) chia hết 2 nên vế trái chia hết cho 4 và vế phải không chia
hết cho 4 nên không thỏa mãn (*)
Vậy không tồn tại n để n2 + 2006 là số chính phương.

b. n là số nguyên tố > 3 nên không chia hết cho 3. Vậy n2 chia hết cho 3 dư 1 do đó n2 + 2006 = 3m + 1
+ 2006 = 3m+2007= 3(m+669) chia hết cho 3.


Vậy n2 + 2006 là hợp số.

Câu 2:Ta xét 3 trường hợp \(\dfrac{a}{\text{ }b}\) = 1 \(\dfrac{a}{b}\) > 1 \(\dfrac{a}{b}\) < 1
TH1: \(\dfrac{a}{b}\) =1 \(\Leftrightarrow a=b\) thì \(\dfrac{a+n}{b+n}\)thì\(\dfrac{a+n}{b+n}\) =\(\dfrac{a}{b}\) = 1

TH2: \(\dfrac{a}{b}>1\Leftrightarrow a+m>b+n\)

\(\dfrac{a+n}{b+n}\) có phần thừa so với 1 là \(\dfrac{a-b}{b}\)\(\dfrac{a-b}{b+n}< \dfrac{a-b}{b}\) nên \(\dfrac{a+n}{b+n}< \dfrac{a}{b}\)

TH3: \(\dfrac{a}{b}< 1\Leftrightarrow a+n< b+n\)

Khi đó \(\dfrac{a+n}{b+n}\) có phần bù tới 1 là \(\dfrac{a-b}{b}\), \(\dfrac{a-b}{b}< \dfrac{b-a}{bb+n}\)

nên \(\dfrac{a+n}{b+n}>\dfrac{a}{b}\)

b. Cho A= \(\dfrac{10^{11}-1}{10^{12}-1}\) và A < 1 nên theo a, nếu \(\dfrac{a}{b}< 1\) thì \(\dfrac{a+n}{b+n}>\dfrac{a}{b}\Rightarrow A< \dfrac{\left(10^{11}-1\right)+11}{\left(10^{12}-1\right)+11}=\dfrac{10^{11}+10}{10^{12}+10}\)Do đó \(A< \dfrac{10^{11}+10}{10^{12}+10}=\dfrac{10\left(10^{10}+1\right)}{10\left(10^{12}+1\right)}\)Vậy A<B

Câu 3: Đặt B1 = a1

B2= a1+a2

B3= a1+a2+a3

còn lại làm tương tự như trên đến B10 = a1+a2+ ...+ a10

Nếu tồn tại Bi ( i= 1,2,3...10). nào đó chia hết cho 10 thì bài toán được chứng minh. ( 0,25 điểm).
Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau:
Ta đen Bi chia cho 10 sẽ được 10 số dư ( các số dư \(\in\) { 1,2.3...9}). Theo nguyên tắc Di-ric- lê, phải có ít nhất 2
số dư bằng nhau. Các số Bm -Bn, chia hết cho 10 ( m>n) \(\Rightarrow\) ĐPCM.

Bình luận (0)

Các câu hỏi tương tự
NG
Xem chi tiết
TT
Xem chi tiết
PA
Xem chi tiết
HN
Xem chi tiết
HH
Xem chi tiết
CD
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
KK
Xem chi tiết