Lời giải:
Ta có:
\(B=11^{2001}+11^{2002}+....+11^{2007}\)
\(B=11^{2001}(1+11^{1}+11^{2}+...+11^6)\)
Giả sử B là số chính phương. Khi đó số mũ của $11$ trong phân tích B phải là số chẵn
Mà 2011 là số lẻ nên \(1+11^1+11^2+...+11^6=11^{2k+1}.A\) với A, k là một số nào đó
\(\Rightarrow 1+11^1+....+11^{6}\vdots 11\)
\(\Leftrightarrow 1\vdots 11\) (vô lý)
Vậy B không phải số chính phương.
em có cách giải khác cô
Ta có biểu thức B có số tận cùng là 1 nên mỗi số hạng của tổng đều tận cùng là 1
Nên B=...1+....1+...1+....+....1=.....7 mà 7 ko phải là số chính phương nên biểu thức này ko phải là số chính phương
Tick em nha cô
Cô ơi cho em hỏi những số chính phương là số nào cô
Sao ko em tick hết zậy.Chẳng lẽ bài em sai na cô