Violympic toán 8

DH

Các hệ số a,b thỏa mãn đẳng thức : \(\dfrac{1}{x^2-4}=\dfrac{a}{x-2}+\dfrac{b}{x+2}\)

TL
2 tháng 3 2017 lúc 7:43

Ta co:

\(\dfrac{1}{x^2-4}=\dfrac{1}{\left(x-2\right)\left(x+2\right)}\)

\(\Rightarrow\dfrac{1}{\left(x-2\right)\left(x+2\right)}=\dfrac{a}{x-2}+\dfrac{b}{x+2}\)

\(\Rightarrow\dfrac{a\left(x+2\right)+b\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{ax+2a+bx-2b}{\left(x-2\right)\left(x+2\right)}\)

Bình luận (0)
HN
2 tháng 3 2017 lúc 10:13

Ta có: \(\dfrac{1}{x^2-4}=\dfrac{a}{x-2}+\dfrac{b}{x+2}\Rightarrow\dfrac{1}{x^2-4}=\dfrac{ax+2a+bx-2b}{x^2-4}\)

\(\Rightarrow ax+2a+bx-2b=1\)

\(\Rightarrow x\left(a+b\right)+\left(2a-2b\right)=0x+1\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=0\\2a-2b=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{4}\\b=-\dfrac{1}{4}\end{matrix}\right.\)

Vậy: \(a=\dfrac{1}{4};b=-\dfrac{1}{4}\).

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
DF
Xem chi tiết
NH
Xem chi tiết
BB
Xem chi tiết
LS
Xem chi tiết
BB
Xem chi tiết
VY
Xem chi tiết