Chương I : Ôn tập và bổ túc về số tự nhiên

HK

Các bạn ơi cần gấp lắm giúp mik điiiiii:

1. Tìm số nguyên tố p để: p + 2 ; p + 8 là các số nguyên tố

2. Cho p ; p + 8 là các số nguyên tố. Chứng minh rằng p + 100 là hợp số

IY
15 tháng 11 2018 lúc 11:51

Bài 1:

+Nếu p = 2 ⇒⇒ p + 2 = 4 (loại)
+Nếu p = 3 ⇒⇒ p + 6 = 9 (loại)
+Nếu p = 5 ⇒⇒ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)
+Nếu p > 5, ta có vì p là số nguyên tố nên ⇒⇒ p không chia hết cho 5 ⇒⇒ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4
-Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) ⋮⋮ 5 (loại)
-Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) ⋮⋮ 5 (loại)
-Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3) ⋮⋮ 5 (loại)
-Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) ⋮⋮ 5 (loại)
⇒⇒ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn
Vậy p = 5 là giá trị cần tìm

Bình luận (0)
IY
15 tháng 11 2018 lúc 11:57

Bài 2:

ta có: p + 8 là số nguyên tố

=> p > 3

mà p là số nguyên tố

=> p được viết dưới dạng: 3k+1; 3k+2

nếu p = 3k + 1 => p + 8 = 3k + 1 + 8 = 3k + 9 chia hết cho 3 ( vô lí, p + 8 sẽ không là số nguyên tố ( đầu bài cho)) (Loại)

nếu p = 3k + 2 => p + 100 = 3k + 2 + 100 = 3k + 102 chia hết cho 3

=> p + 100 là hợp số (đpcm)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
HK
Xem chi tiết
H24
Xem chi tiết
MA
Xem chi tiết
Xem chi tiết
HK
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
Xem chi tiết