Bài 12: Phép chia phân số

AL

B=\(\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2013}\right):\left(2012+\dfrac{2011}{2}+...+\dfrac{2}{2011}+\dfrac{1}{2012}\right)\).Tính B

NL
3 tháng 12 2018 lúc 16:51

Đặt \(B=A\div C\)

\(C=2012+\dfrac{2011}{2}+...+\dfrac{1}{2012}=2012+\dfrac{2013-2}{2}+\dfrac{2013-3}{3}+...+\dfrac{2013-2012}{2012}\)

\(C=2012+\dfrac{2013}{2}+\dfrac{2013}{3}+...+\dfrac{2013}{2012}-1-1-...-1\)

\(C=2012+2013\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}\right)-2011\)

\(C=1+2013\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}\right)=\dfrac{2013}{2013}+2013\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}\right)\)

\(C=2013\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2013}\right)=2013.A\)

\(\Rightarrow B=\dfrac{A}{C}=\dfrac{1}{2013}\)

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
AT
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SB
Xem chi tiết
NP
Xem chi tiết
SK
Xem chi tiết