$2. Hệ bất phương trình bậc nhất hai ẩn

QL

Biểu diễn miền nghiệm của hệ bất phương trình:

a) \(\left\{ \begin{array}{l}x + 2y <  - 4\\y \ge x + 5\end{array} \right.\)

b) \(\left\{ \begin{array}{l}4x - 2y > 8\\x \ge 0\\y \le 0\end{array} \right.\)

HM
23 tháng 9 2023 lúc 11:11

a) Vẽ các đường thẳng \(x + 2y =  - 4\)(nét đứt) và \(y = x + 5\) (nét liền)

Thay tọa độ O vào \(x + 2y <  - 4\) ta được: \(0 + 2.0 <  - 4\) (Sai)

=> Gạch đi phần chứa O.

Thay tọa độ O vào \(y \ge x + 5\) ta được: \(0 \ge 0 + 5\) (Sai)

=> Gạch đi phần chứa O.

\(x + 2y = -4 => y = \frac{-4 - x}{2} \)

Xét phương trình hoành độ giao điểm của hai đường thẳng \(x + 2y =  - 4\) và \(y = x + 5\), ta được:

\( \frac{-4 - x}{2} = x + 5 \\ x = \frac{-14}{3} \\ => y = \frac{1}{3} \)

Miền nghiệm của hệ:

Từ hình vẽ ta thấy miền nghiệm của hệ là \(d_3\)

b) Vẽ các đường thẳng \(4x - 2y = 8\)(nét đứt) và hai trục (nét liền)

Thay tọa độ O vào \(4x - 2y > 8\) ta được: \(4.0 - 2.0 > 8\) (Sai)

=> Gạch đi phần chứa O.

Với \(x \ge 0\) thì gạch phần bên trái Oy

Với \(y \le 0\) thì gạch bên trên Ox

Miền nghiệm của hệ:

Bình luận (0)

Các câu hỏi tương tự
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết