ta có \(sin^2+cos^2=1\Leftrightarrow cos^2=1-sin^2=1-\frac{4}{9}=\frac{5}{9}\)
khi đó \(A=2sin^2+5cos^2=\frac{2.4}{9}+\frac{5.5}{9}=\frac{11}{3}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
ta có \(sin^2+cos^2=1\Leftrightarrow cos^2=1-sin^2=1-\frac{4}{9}=\frac{5}{9}\)
khi đó \(A=2sin^2+5cos^2=\frac{2.4}{9}+\frac{5.5}{9}=\frac{11}{3}\)
Biết cot α=\(\sqrt{5}\). Tính giá trị biểu thức: A=\(\dfrac{\sin^2\alpha+\cos^2\alpha}{\sin\alpha.\cos\alpha}\)
Biết \(tan\alpha=2.\) Tính \(\dfrac{sin\alpha+cos\alpha}{sin\alpha-cos\alpha}\)
Rút gọn biểu thức:
\(A=\dfrac{1+2sin\alpha.cos\alpha}{cos^2\alpha-sin\alpha}\)
\(\sin^2\alpha.\cos^2\alpha+\sin^6\alpha+2\sin^2\alpha.\cos^2\alpha+\cos^2\alpha\)
Rút gọn biểu thức trên
Biết sin α = \(\frac{2}{5}\). Tính giá trị A= 3sin2α + 8 cos2α - 2 sinα.cosα
Chứng minh rằng giá trị của các biểu thức sau không phụ thuộc vào số đo của góc nhọn \(\alpha\)
\(\sin^4\alpha+\sin^2\alpha\cdot\cos^2\alpha+\cos^2\alpha\)
\(\frac{1}{1+\sin\alpha}+\frac{1}{1-\sin\alpha}-2\tan^2\alpha\)
Bài 1:
a) Giải ΔMNP vuông tại M biết NP=4cm, góc N=35o. (Số đo góc làm tròn đến độ, độ dài cạnh làm tròn đến chữ số thập phân thứ ba).
b) Biết 0o<α<90o. Thu gọn biểu thức sau: A=\(\dfrac{2cos^2\alpha-1}{sin\alpha+cos\alpha}\)
c) Sắp xếp các tỉ số lượng giác theo giá trị tăng dần:
sin 35o; cos25o; sin60o; sin30o; cos40o
1. Cho tam giác ABC vuông tại A, đường cao AH . Biết AH=6cm , HC - HB = 9cm. Tính các độ dài HB,HC.
2. Cho cos a = 0,28. Tính các giá trị lượng giác còn lại của góc a.
3. Tìm sin α, cos α biết:
a) tg α = \(\frac{3}{4}\) b) cotg α = \(\frac{5}{12}\)
4. Cho tan α = 4. Tính giá trị biểu thức
a) A= \(\frac{\sin a+\cos a}{\sin a-\cos a}\) b) B= \(\frac{3\sin^2a-3\cos^2a}{3\sin^2a-5\cos^2a}\)
CMR:\(1,\tan\alpha\cdot\cot\alpha=1\)
\(2,\sin^2\alpha+\cos^2\alpha=1\)
\(3,\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha};\cot\alpha=\dfrac{\cos\alpha}{\tan\alpha}\)