Ôn tập toán 8

NH

Biết rằng \(x=-2\) là một trong các nghiệm của phương trình :

 \(x^3+ax^2-4x-4=0\)

a ) Xác định giá trị của a

b ) Với a vừa tìm được ở câu a ) tìm các nghiệm còn lại của phương trình bằng cách đưa phương trình đã cho về dạng phương trình tích

H24
30 tháng 7 2016 lúc 9:02

a) do x=-2 l;à nghiệm của Pt nên ta thay vào PT . Ta được:

-8+4a+8-4=0

<=> a= 1

vậy a=1

b) với a =1 thay vào PT ta được  pT trở thành :

\(x^3+x^2-4x-4=0\)

<=> \(x^3+2x^2-x^2-2x-2x-4=0\)

<=> \(x^2\left(x+2\right)-x\left(x+2\right)-2\left(x+2\right)=0\)

<=> \(\left(x+2\right)\left(x^2-x-2\right)=0\)

<=>\(\left(x+2\right)\left(x+1\right)\left(x-2\right)=0\)

<=>\(\left[\begin{array}{nghiempt}x+2=0\\x-2=0\\x+1=0\end{array}\right.\)<=>\(\left[\begin{array}{nghiempt}x=2\\x=-2\\x=-1\end{array}\right.\)

vậy nghiệm còn lại là -1 và 2

 

Bình luận (0)
VT
30 tháng 7 2016 lúc 9:01

a ) Số a phải thõa mãn điều kiện  \(\left(-2\right)^3+a\left(-2\right)^2-4\left(-2\right)-4=0\)

\(\Rightarrow a=1\)

b ) Với \(a=1\) , ta có phương trình \(x^3+x^2-4x-4=0\)

Ta phân tích vế trái của phương trình thành tích như sau :
   \(x^3+x^2-4x-4=\left(x^3+x^2\right)-\left(4x+4\right)=x^2\left(x+1\right)-4\left(x+1\right)\)

                              \(=\left(x+1\right)\left(x^2-4\right)=\left(x+1\right)\left(x-2\right)\left(x+2\right)\)

Đáp số : \(S=\left\{-1;-2;2\right\}\)

Mình chỉ hướng dẫn như vậy thôi .

Bình luận (0)

Các câu hỏi tương tự
ND
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
KM
Xem chi tiết
NA
Xem chi tiết
TA
Xem chi tiết
TD
Xem chi tiết
HV
Xem chi tiết
QT
Xem chi tiết