Cho \(sinx+cosx=m\) Tính theo m giá trị biểu thức
\(a,A=sinx.cosx\\ b,B=\left|sinx-cosx\right|\\ c,C=sin^4x+cos^4x\\ d,D=tan^2x+cot^2x\)
cho x(\(\frac{\pi}{2}\);π):sinx=\(\frac{1}{3}\). Giá trị của biểu thức p là: sinx + cosx + 1 là
chứng minh biểu thức sau:
\(\frac{sin^2x}{sinx-cosx}-\frac{sinx+cosx}{tan^2x-1}=sinx+cosx\)
tìm tập giá trị của hàm số y=\(\dfrac{2sinx+cosx}{sinx+2cosx+4}\)
Tìm giá trị lớn nhất, giá trị nhỏ nhất:
a) \(y=3-\dfrac{4}{3+2sinx}\)
b) \(y=\dfrac{2}{5-4cosx}\)
c) \(y=2cos^2x-1\)
d) \(y=3-4sin^22x\)
e) \(y=\sqrt{3-2sinx}\)
f) \(y=\dfrac{5}{\sqrt{5-4sinx}}\)
g) \(y=\dfrac{4}{4-\sqrt{5+4cosx}}\)
h) \(y=sinx-cosx-2\)
i) \(y=\sqrt{3}cosx-sinx+3\)
j) \(y=4cos^2x-4cosx+5\)
Bài 1: Tìm giá trị lớn nhất, nhỏ nhất của hàm số
y = \(cos^4x-sin^4x+3\)
Bài 2: Gỉai các phương trình lượng giác sau
a) \(3-cosx+6sinx-sin2x=0\)
b) \(sin^4x+cos^4x=\frac{1}{2}\)
c) \(1+cosx+cos3x=-cos2x\)
Cho ba số thực dương a, b, c thoả mãn :a2+b2+c2=3 . Tìm giá trị nhỏ nhất của biểu thức:
\(M=\dfrac{a^5}{b^3+c^2}+\dfrac{b^5}{c^3+a^2}+\dfrac{c^5}{a^3+b^2}+a^4+b^4+c^4\)
1) y = \(\frac{cosx+1}{cosx}\)
2) y = \(\frac{4-cosx}{\sqrt{1-sinx}}\)
3) y = 3 - |\(sinx\)|
-
Mọi người giúp mình với ạ.
tìm tất cả giá trị của m để hàm số sau có tập xác định R
a)y=\(\sqrt{m-cosx}\)
b)y=\(\sqrt{2sinx-m}\)
c)y=\(\dfrac{sinx-1}{cosx+m}\)