`cos 3x-sin x=\sqrt{3}cos x-sin 3x`
`<=>sin 3x+cos 3x=sin x+\sqrt{3}cos x`
`<=>\sqrt{2}(1/\sqrt{2}sin 3x+1/\sqrt{2}cos 3x)=1/2sin x+\sqrt{3}/2cos x`
`<=>\sqrt{2}sin(3x+\pi/4)=sin(x+\pi/3)`
`->` Đề có sai ko bạn nhỉ?
`cos 3x-sin x=\sqrt{3}cos x-sin 3x`
`<=>sin 3x+cos 3x=sin x+\sqrt{3}cos x`
`<=>\sqrt{2}(1/\sqrt{2}sin 3x+1/\sqrt{2}cos 3x)=1/2sin x+\sqrt{3}/2cos x`
`<=>\sqrt{2}sin(3x+\pi/4)=sin(x+\pi/3)`
`->` Đề có sai ko bạn nhỉ?
3.3 .giải phương trình
d) sin 8x - cos 6x = \(\sqrt{3}\)(sin 6x + cos 8x)
3.4 .giải pt
a) 2sin(\(x+\dfrac{\pi}{4}\)) + 4 sin (\(x-\dfrac{\pi}{4}\)) = \(\dfrac{3\sqrt{5}}{2}\)
b)3 sin (x-\(\dfrac{\pi}{3}\)) + 4 sin (x +\(\dfrac{\pi}{6}\)) + 5 sin(5x +\(\dfrac{\pi}{6}\)) = 0
3.9 a) 8sin x =\(\dfrac{\sqrt{3}}{cosx}+\dfrac{1}{sinx}\)
b)\(2\sqrt{sinx}=\dfrac{\sqrt{3}tanx}{2\sqrt{sinx}-1}-1\)
mọi người ơi giúp mình với mình sắp phải kiểm tra rồi
Tìm nghiệm của các phương trinh:
1,\(\left(sinx+\dfrac{sin3x+cos3x}{1+2sin2x}\right)=\dfrac{3+cos2x}{5}\)
2,\(48-\dfrac{1}{cos^4x}-\dfrac{2}{sin^2x}\left(1+cot2xcotx\right)=0\)
3,\(cos^4x+sin^4x+cos\left(x-\dfrac{\pi}{4}\right)sin\left(3x-\dfrac{\pi}{4}\right)-\dfrac{3}{2}=0\)
4,\(cos5x+cos2x+2sin3xsin2x=0\) trên \(\left[0;2\pi\right]\)
5,\(\dfrac{cos\left(cosx+2sinx\right)+3sinx\left(sinx+\sqrt{2}\right)}{sin2x-1}=1\)
6,\(\left(sinx+\dfrac{sin3x+cos3x}{1+2sin2x}\right)=\dfrac{3+cos2x}{5}\)
7,\(cos\left(2x+\dfrac{\pi}{4}\right)+cos\left(2x-\dfrac{\pi}{4}\right)+4sinx=2+\sqrt{2}\left(1-sinx\right)\)
tìm tập xác định của hàm số lượng giác sau
a)\(y=\dfrac{tan\left(2x-\dfrac{\pi}{4}\right)}{\sqrt{1-sin\left(x-\dfrac{\pi}{8}\right)}}\)
b)\(y=\dfrac{tan\left(x-\dfrac{\pi}{4}\right)}{1-cos\left(x+\dfrac{\pi}{3}\right)}\)
c)\(y=\dfrac{3}{cosx-cos3x}\)
d)\(y=\dfrac{4}{sin^2x-cos^2x}\)
e)\(y=\dfrac{1+cot\left(\dfrac{\pi}{3}+x\right)}{tan^2\left(3x-\dfrac{\pi}{4}\right)}\)
Xét tính chẵn, lẻ của các hàm số
1,\(y=cosx+sin^2x\)
2,\(y=sinx+cosx\)
3,\(y=tanx+2sinx\)
4,\(y=tan2x-sin3x\)
5,\(sin2x+cosx\)
6,\(y=cosx.sin^2x-tan^2x\)
7,\(y=cos\left(x-\dfrac{\pi}{4}\right)+cos\left(x+\dfrac{\pi}{4}\right)\)
8,\(y=\dfrac{2+cosx}{1+sin^2x}\)
9,\(y=\left|2+sinx\right|+\left|2-sinx\right|\)
Giải các phương trình sau:
a) Sinx + \(\sqrt{3}\) Cosx + 2Sin(\(\dfrac{\Pi}{6}\)-x) = \(\sqrt{2}\)
b) 3Cosx - 4Sinx + \(\dfrac{2}{3Cosx-4Sinx-6}\)= 3
c) 8Sinx = \(\dfrac{\sqrt{3}}{Cosx}+\dfrac{1}{Sinx}\)
d) 3Sin3x - \(\sqrt{3}\) Cos9x = 1 + 4Sin33x
e) 5Sin2x - 6Cos2x = 13
f) Cos7x - \(\sqrt{3}\) Sin7x - Sinx = \(\sqrt{3}\) Cos x
Giải các pt sau:
a) \(\dfrac{\sqrt{3}\left(1-cos2x\right)}{2sinx}=cosx\)
b) \(sin2x+sin^2x=\dfrac{1}{2}\)
c) \(cosx+\sqrt{3}sinx=\dfrac{1}{cosx}\)
d) \(cos7x-\sqrt{3}sin7x+\sqrt{2}=0,x\in\left(\dfrac{2\pi}{5};\dfrac{6\pi}{7}\right)\)
Tịnh tiến đồ thị hàm số y= cos x sang phải \(\dfrac{\pi}{2}\) ta được đồ thị hàm số nào
A. \(y=sinx\)
B.\(y=-cosx\)
C.\(y=\)\(cos\left(x+\dfrac{\pi}{2}\right)\)
D.\(y=sin\left(x-\dfrac{\pi}{2}\right)\)
giải pt
a, \(\sin^2x+\sin^22x+\sin^23x=\dfrac{3}{2}\)
b. \(\cos^2x+\sin^22x+\cos^23x=1\)
c,\(\sin5x+2\cos^2x=1\)
d,\(1+\tan x=2\sqrt{2}\sin\left(x+\dfrac{\pi}{4}\right)\)
e,\(\sin3x+\cos3x-\sin x+\cos x=\sqrt{2}\cos2x\)
Giải các pt sau
a, \(\dfrac{1}{sinx}+\dfrac{1}{cosx}=4sin\left(x+\dfrac{\pi}{4}\right)\)
b, \(2sin\left(2x-\dfrac{\pi}{6}\right)+4sinx+1=0\)
c, \(cos2x+\sqrt{3}sinx+\sqrt{3}sin2x-cosx=2\)
d, \(4sin^2\dfrac{x}{2}-\sqrt{3}cos2x=1+cos^2\left(x-\dfrac{3\pi}{4}\right)\)
Giải phương trình: \(sin3x-cos3x+sinx+cosx=\dfrac{1}{sin3x+cosx}-\dfrac{1}{cos3x-sinx}\)