Bên trong một hồ bơi, người ta dự định thiết kế hai bể sục nửa hình tròn bằng nhau và một bể sục hình tròn (H7.14) để người bơi có thể ngồi tựa lưng vào thành các bề sục thư giãn. Hãy tìm bán kính của các bể sục đề tồng chu Vị của ba bể là 32 m mà tổng diện tích (chiếm hồ bơi) là nhỏ nhất. Trong tính toán, lấy 13, 14, độ dài tính theo mét và làm tròn tới chữ số thập phân thứ hai.
Gọi bán kính bể hình tròn và bể nủa hình tròn tương ứng là x, y (m). Khi đó, tổng chu vi ba bể là 32 m khi và chỉ khi 1,57x + 2,57y-8=0.
Gọi tổng diện tích của ba bể sục là S (\({m^2}\)). Khi đó \({x^2} + {y^2} = \frac{S}{{3,14}}\).
Trong mặt phẳng toạ độ Oxy, xét đường tròn (C): \({x^2} + {y^2} = \frac{S}{{3,14}}\) có tâm O(0, 0), bán kính \(R = \sqrt {\frac{S}{{3,14}}} \) và đường thẳng \(\Delta :1,57x{\rm{ }} + {\rm{ }}2,57y - 8 = 0\).
Ta có S nhỏ nhất khi R nhỏ nhất; \(M\left( {x;y} \right)\) thuộc đường thẳng \(\Delta \), đồng thời M thuộc đường tròn \(\left( C \right)\). Bài toán chuyển thành: Tìm R nhỏ nhất để \(\left( C \right)\) và \(\Delta \) có ít nhất một điểm chung. Điều đó tương đương với \(\Delta \) tiếp xúc với \(\left( C \right)\), đồng thời M trùng với H là hình chiếu vuông góc của O trên \(\Delta \)
Ta có: \(\overrightarrow {{u_{OH}}} = \left( {1,57;2,57} \right)\) suy ra \(\overrightarrow {{n_{OH}}} = \left( {2,57; - 1,57} \right)\).
Phương trình OH là \(2,57x - 1,57y = 0\)
Tọa độ điểm H là nghiệm của hệ \(\left\{ \begin{array}{l}1,57x + 2,57y - 8 = 0\\2,57x - 1,57y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \approx 1,38\\y \approx 2,27\end{array} \right.\)
Vậy bán kính của bể tròn và bể nửa hình tròn tương ứng là 1,38m và 2,27m.