Violympic toán 6

KA

bài) Tính

a) 75%+1,2-2+1/5+20180

b) (-4/3+0,75) :2017/2018+(1+1/3-75%) :2017/2018

c) (2018-1/3-2/4-3/5-4/6-...-2018/2020) : (1/15+1/20+1/25+1/30+...1/10100)

Giải:

a) \(75\%+1,2-2+\dfrac{1}{5}+2018^0\) 

=\(\dfrac{3}{4}+\dfrac{6}{5}-2+\dfrac{1}{5}+1\) 

=\(\left(\dfrac{6}{5}+\dfrac{1}{5}\right)+\left(\dfrac{3}{4}-2+1\right)\) 

=\(\dfrac{7}{5}+\dfrac{-1}{4}\) 

=\(\dfrac{23}{20}\) 

b) \(\left(\dfrac{-4}{3}+0,75\right):\dfrac{2017}{2018}+\left(1+\dfrac{1}{3}-75\%\right):\dfrac{2017}{2018}\) 

=\(\left(\dfrac{-4}{3}+0,75+1+\dfrac{1}{3}-75\%\right):\dfrac{2017}{2018}\) 

=\(\left[\left(\dfrac{-4}{3}+1+\dfrac{1}{3}\right)+\left(0,75-75\%\right)\right]:\dfrac{2017}{2018}\) 

=\(\left[0+0\right]:\dfrac{2017}{2018}\) 

=0\(:\dfrac{2017}{2018}\) 

=0

Bình luận (0)

c)\(\left(2018-\dfrac{1}{3}-\dfrac{2}{4}-\dfrac{3}{5}-\dfrac{4}{6}-...-\dfrac{2018}{2020}\right):\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\)

=\(\left(1-\dfrac{1}{3}-1-\dfrac{2}{4}-1-\dfrac{3}{5}-1-\dfrac{4}{6}-...-1-\dfrac{2018}{2020}\right):\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\) 

=\(\left(\dfrac{2}{3}-\dfrac{2}{4}-\dfrac{2}{5}-\dfrac{2}{6}-...-\dfrac{2}{2020}\right):\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\) =\(\left[2.\left(\dfrac{1}{3}-\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}-...-\dfrac{1}{2020}\right)\right]:\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\) =\(\left\{2.\left[\dfrac{5}{5}.\left(\dfrac{1}{3}-\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}-...-\dfrac{1}{2020}\right)\right]\right\}:\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\) =\(\left\{2.\left[5.\left(\dfrac{1}{15}-\dfrac{1}{20}-\dfrac{1}{25}-\dfrac{1}{30}-...-\dfrac{1}{10100}\right)\right]\right\}:\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\) =\(10.\left(\dfrac{1}{15}-\dfrac{1}{20}-\dfrac{1}{25}-\dfrac{1}{30}-...-\dfrac{1}{10100}\right):\left(\dfrac{1}{15}+\dfrac{1}{20}+\dfrac{1}{25}+\dfrac{1}{30}+...+\dfrac{1}{10100}\right)\) =-10

Bình luận (0)

Các câu hỏi tương tự
KA
Xem chi tiết
NN
Xem chi tiết
LV
Xem chi tiết
HT
Xem chi tiết
NT
Xem chi tiết
MG
Xem chi tiết
TC
Xem chi tiết
LQ
Xem chi tiết
KT
Xem chi tiết