Chương 1:ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

QT

Bài tập 4: Trong không gian cho M (1 ; 2 ; 3) N ( - 3 ; 4 ; 1) P x + 2y - z + 4 = 0 a, Viết phương trình mặt phẳng trung trực MN b, Viết phương trình mặt phảng (β)(β) đi qua MN và song song (P).

NL
21 tháng 12 2020 lúc 8:28

\(\overrightarrow{NM}=\left(4;-2;2\right)=2\left(2;-1;1\right)\)

Gọi Q là trung điểm MN \(\Rightarrow Q\left(-1;3;2\right)\)

Phương trình mặt phẳng trung trực của MN (đi qua Q và nhận \(\overrightarrow{NM}\) là 1 vecto pháp tuyến) có dạng:

\(2\left(x+1\right)-1\left(y-3\right)+1\left(z-2\right)=0\)

\(\Leftrightarrow2x-y+z+3=0\)

b.

(P) có 1 vecto pháp tuyến là \(\left(1;2;-1\right)\)

Do \(\left(\beta\right)\) song song (P) nên cũng nhận \(\left(1;2;-1\right)\) là 1 vtpt

À thôi bạn ghi sai đề rồi, \(\left(\beta\right)\) chỉ có thể đi qua M hoặc N (1 điểm thôi), không thể đi qua MN được vì MN không song song với (P)

Bình luận (2)
QH
9 tháng 1 2021 lúc 15:07

iu

Bình luận (0)