biểu thức A
1/1.1<1/0.1
1/2.2<1/1.2
........
1/50.50<1/49.50
=>A<1-1/2+1/2-1/3+....+1/49-1/50
=>A<1-1/50<1
=>A<1
Mà 173/100>1
=>A<B
biểu thức A
1/1.1<1/0.1
1/2.2<1/1.2
........
1/50.50<1/49.50
=>A<1-1/2+1/2-1/3+....+1/49-1/50
=>A<1-1/50<1
=>A<1
Mà 173/100>1
=>A<B
tính H = \(\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+...+\dfrac{98}{2}+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}}:\dfrac{92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{500}}\)
chứng minh :
a) \(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}>\dfrac{1}{4}\) b) \(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{2013^2}+\dfrac{1}{2014}>\dfrac{1}{5}\)
chứng minh rằng :
a) \(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}\) b)\(\dfrac{1}{5^2}+\dfrac{1}{6^5}+...+\dfrac{1}{2013^2}+\dfrac{1}{2014}>\dfrac{1}{5}\)
Bài 1 : Thực hiện phép tính ( tính hợp lý nếu có thể )
a ) \(\dfrac{1}{12}+\dfrac{3}{4}\)
b ) \(\dfrac{-4}{7}.1\dfrac{1}{2}\)
c )\(\dfrac{7}{9}+\left(\dfrac{2}{3}+\dfrac{-7}{9}\right)\)
d )\(\dfrac{2}{3}-\dfrac{1}{3}:\dfrac{3}{4}\)
e )\(\dfrac{-7}{25}.\dfrac{11}{13}+\dfrac{-7}{25}.\dfrac{2}{13}\)
g )\(2\dfrac{2}{5}.0,25-\left(\dfrac{11}{20}+75\%\right):\dfrac{13}{5}\)
Bài 1: Cho B=1+\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+\(\dfrac{1}{4}+...+\dfrac{1}{2^{100}-1}\)
a) Chứng minh B<100
b) Chứng minh B>50
a) \(\dfrac{2}{1^2}.\dfrac{6}{2^2}.\dfrac{12}{3^2}.\dfrac{20}{4^2}.\dfrac{30}{5^2}.....\dfrac{110}{10^2}.x=-20\)
b) \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2013}\right).x+2013=\dfrac{2014}{1}+\dfrac{2015}{2}+...+\dfrac{4025}{2012}+\dfrac{4026}{2013}\)
c) \(\left(\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right).x=\dfrac{2012}{51}+\dfrac{2012}{52}+...+\dfrac{2012}{99}+\dfrac{2012}{100}\)
Chứng tỏ rằng:
a) \(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{2}\)
b) \(S=\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{80}>\dfrac{7}{12}\)
c) \(S=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{20}}< 1\)
d) \(\dfrac{49}{100}< S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{99^2}< 1\)
Các bạn giải ra từng bước dùm mik nha
Thanks m.n
Bài 1. Thực hiện phép tính:
a) |5.0,6+\(\dfrac{2}{3}\)|- \(\dfrac{1}{3}\)
b)(0,25 - 1\(\dfrac{1}{4}\)) : 5 - \(\dfrac{1}{5}\).(-3)\(^2\)
c)\(\dfrac{14}{17}.\dfrac{7}{5}-\dfrac{-3}{17}:\dfrac{5}{7}\)
d)\(\dfrac{7}{16}+\dfrac{-9}{25}+\dfrac{9}{16}+\dfrac{-16}{25}\)
e)\(\dfrac{5}{6}+2\sqrt{\dfrac{4}{9}}\)
Bài 1: Tìm x, biết
a)\(\dfrac{-2}{3}\)- \(\dfrac{1}{3}\) (2x-5) = \(\dfrac{3}{2}\)
b)\(\dfrac{2}{5}\) .x +\(\dfrac{1}{2}\) = \(\dfrac{-3}{4}\)
giúp em