Bài 46:
11: Ta có: \(-4\left|x-2\right|=-8\)
\(\Leftrightarrow\left|x-2\right|=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=2\\x-2=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)
Vậy: x∈{0;4}
12: Ta có: \(5\left|x+2\right|=-10\cdot\left(-2\right)\)
\(\Leftrightarrow5\left|x+2\right|=20\)
\(\Leftrightarrow\left|x+2\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=4\\x+2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-6\end{matrix}\right.\)
Vậy: x∈{-6;2}
13: Ta có: \(6\left|x-2\right|=18:\left(-3\right)\)
\(\Leftrightarrow6\left|x-2\right|=-6\)(1)
Ta có: \(\left|x-2\right|\ge0\forall x\)
\(\Rightarrow6\left|x-2\right|\ge0\forall x\)(2)
Ta có: -6<0(3)
Từ (1), (2) và (3) suy ra x∈∅
Vậy: x∈∅
14: Ta có:\(-7\left|x+4\right|=21:\left(-3\right)\)
\(\Leftrightarrow-7\left|x+4\right|=-7\)
\(\Leftrightarrow\left|x+4\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=1\\x+4=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-5\end{matrix}\right.\)
Vậy: x∈{-5;-3}
15: Ta có: \(4\left|x+1\right|=8\left(-2\right)-8\left(-5\right)\)
\(\Leftrightarrow4\left|x+1\right|=-16-\left(-40\right)\)
\(\Leftrightarrow4\left|x+1\right|=24\)
\(\Leftrightarrow\left|x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=6\\x+1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-7\end{matrix}\right.\)
Vậy: x∈{-7;5}
16: Ta có: \(3\left|x+5\right|=-9\)(4)
Ta có: |x+5|≥0∀x
⇒3|x+5|≥0∀x(5)
Ta có: -9<0(6)
Từ (4), (5) và (6) suy ra x∈∅
Vậy: x∈∅
17: Ta có: \(-8\left|x-3\right|=24-16:2\)
\(\Leftrightarrow-8\left|x-3\right|=16\)
\(\Leftrightarrow\left|x-3\right|=-2\)
mà |x-3|≥0>-2∀x
nên x∈∅
Vậy: x∈∅
18: Ta có: \(-3\left|x+6\right|=6\cdot2-9\)
\(\Leftrightarrow-3\left|x+6\right|=3\)
\(\Leftrightarrow\left|x+6\right|=-1\)
mà |x+6|≥0>-1∀x
nên x∈∅
Vậy: x∈∅
19: Ta có: \(5-\left|x+7\right|=4\)
\(\Leftrightarrow\left|x+7\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x+7=-1\\x+7=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\\x=-6\end{matrix}\right.\)
Vậy: x∈{-8;-6}
20: Ta có: \(12-\left|x+8\right|=10\)
\(\Leftrightarrow\left|x+8\right|=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x+8=2\\x+8=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=-10\end{matrix}\right.\)
Vậy: x∈{-10;-6}