A= ( 2x+3)(x-1) - (x+1)(2x-5) -2
= \(2x^2-2x+3x-3-\left(2x^2-5x+2x-5\right)-2\)
= \(2x^2-2x+3x-3-2x^2+5x-2x+5-2\)
= \(4x\)
B= \(\left(x-4\right)\left(x-2\right)-\left(3x+1\right)\left(\frac{1}{3}x-2\right)+2\frac{1}{3}x-10\)
= \(x^2-2x-4x+8-\left(x^2-6x+\frac{1}{3}x-2\right)+\frac{7}{3}x-10\)
= \(x^2-2x-4x+8-x^2+6x-\frac{1}{3}x+2+\frac{7}{3}x-10\)
= \(2x\)
Ta được: \(\frac{A}{B}=\frac{4x}{2x}=2\)