Chương II : Tam giác

LN

Bài 3: (4 điểm) Cho đoạn thẳng BC. Gọi I là trung điểm của BC. Trên đường trung trực của BC lấy điểm A (A khác I)
Chứng minh \(\Delta\)AIB = \(\Delta\)AIC.
Kẻ IH vuông góc với AB, kẻ IK vuông góc với AC.
Chứng minh \(\Delta\)AHK cân.
Chứng minh HK//BC.
Bài 4: (2 điểm) Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối của tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED sao cho CM = EN. Chứng minh ba điểm M; A; N thẳng hàng.

NV
5 tháng 3 2018 lúc 17:43

Câu 3 :

A I B C H K

Xét \(\Delta AIB,\Delta AIC\) có :

\(BI=CI\) (I là trung điểm của BC)

\(\widehat{AIB}=\widehat{AIC}\) (tính chất đường trung trực)

\(AI:Chung\)

=> \(\Delta AIB=\Delta AIC\left(c.g.c\right)\)

Xét \(\Delta HBI,\Delta KCI\) có :

\(\widehat{HBI}=\widehat{KCI}\) (do \(\Delta AIB=\Delta AIC\))

\(BI=CI\) (I là trung điểm của BC)

\(\widehat{BHI}=\widehat{CKI}\left(=90^o\right)\)

=> \(\Delta HBI=\Delta KCI\) (cạnh huyền - góc nhọn)

=> IH = IK (2 cạnh tương ứng)

=> \(\Delta IHK\) cân tại I

Ta có : \(\left\{{}\begin{matrix}\widehat{BHI}+\widehat{IHK}+\widehat{AHK}=180^o\\\widehat{CKI}+\widehat{IKH}+\widehat{AKH}=180^o\end{matrix}\right.\left(Kềbù\right)\)

Lại có : \(\left\{{}\begin{matrix}\widehat{BHI}=\widehat{CKI}\left(=90^o\right)\\\widehat{IHK}=\widehat{IKH}\left(\text{Tam giác IHK cân tại I}\right)\end{matrix}\right.\)

Suy ra : \(180^o-\left(\widehat{BHI}+\widehat{IHK}\right)=180^o-\left(\widehat{CKI}+\widehat{IKH}\right)\)

\(\Leftrightarrow\widehat{AHK}=\widehat{AKH}\)

=> \(\Delta AHK\) cân tại A

Ta có : \(\widehat{AHK}=\widehat{AKH}=\dfrac{180^{^O}-\widehat{A}}{2}\left(1\right)\)

Xét \(\Delta ABC\) cân tại A có :

\(\widehat{ABC}=\widehat{ACB}=\dfrac{180^o-\widehat{A}}{2}\left(2\right)\)

Từ (1) và (2) => \(\widehat{AHK}=\widehat{ABC}\left(=\dfrac{180^o-\widehat{A}}{2}\right)\)

Mà thấy : 2 góc này ở vị trí đồng vị

=> \(\text{HK // BC }\)

=> đpcm.

Bình luận (0)
NM
13 tháng 3 2020 lúc 16:16

Xét ΔAIB,ΔAIC có

:BI=CI (I là trung điểm của BC)

ˆAIB=ˆAIC (tính chất đường trung trực)

AI:Chung

=> ΔAIB=ΔAIC(c.g.c)

Xét ΔHBI,ΔKCI có :

ˆHBI=ˆKCI (do ΔAIB=ΔAIC)

BI=CI (I là trung điểm của BC)

ˆBHI=ˆCKI(=90o)

=> ΔHBI=ΔKCI (cạnh huyền - góc nhọn)

=> IH = IK (2 cạnh tương ứng)

=> ΔIHK cân tại I

Ta có : {ˆBHI+ˆIHK+ˆAHK=180oˆCKI+ˆIKH+ˆAKH=180o(Kềbù)

Lại có : {ˆBHI=ˆCKI(=90o)ˆIHK=ˆIKH(Tam giác IHK cân tại I)

Suy ra : 180o−(ˆBHI+ˆIHK)=180o−(ˆCKI+ˆIKH)⇔ˆAHK=ˆAKH

=> ΔAHK cân tại A

Ta có : ˆAHK=ˆAKH=180O−ˆA2(1)

Xét ΔABC cân tại A có :ˆABC=ˆACB=180o−ˆA2(2)Từ (1) và (2) => ˆAHK=ˆABC(=180o−ˆA2) Mà thấy : 2 góc này ở vị trí đồng vị

=> HK // BC

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NA
Xem chi tiết
H24
Xem chi tiết
DD
Xem chi tiết
PN
Xem chi tiết
NN
Xem chi tiết
BQ
Xem chi tiết
NN
Xem chi tiết
HT
Xem chi tiết
MT
Xem chi tiết