Phân thức đại số

CE

Bài 2: Giải phương trình sau:

\(a,\frac{x+1}{3}+\frac{3\left(2x+1\right)}{4}=\frac{2x+3\left(x+1\right)}{6}+\frac{7+12x}{12}\)
\(b,\frac{2-x}{2001}-1=\frac{1-x}{2002}-\frac{x}{2003}\)

NL
27 tháng 2 2020 lúc 19:01

a, Ta có : \(\frac{x+1}{3}+\frac{3\left(2x+1\right)}{4}=\frac{2x+3\left(x+1\right)}{6}+\frac{7+12x}{12}\)

=> \(\frac{4\left(x+1\right)}{12}+\frac{9\left(2x+1\right)}{12}=\frac{2\left(2x+3\left(x+1\right)\right)}{12}+\frac{7+12x}{12}\)

=> \(4\left(x+1\right)+9\left(2x+1\right)=2\left(2x+3\left(x+1\right)\right)+7+12x\)

=> \(4\left(x+1\right)+9\left(2x+1\right)=2\left(2x+3x+3\right)+7+12x\)

=> \(4x+4+18x+9=4x+6x+6+7+12x\)

=> \(4x+18x-12x-6x-4x=6+7-4-9\)

=> \(0x=0\) ( Luôn đúng với mọi x )

Vậy phương trình có vô số nghiệm .

b, Ta có : \(\frac{2-x}{2001}-1=\frac{1-x}{2002}-\frac{x}{2003}\)

=> \(\frac{2-x}{2001}+1=\frac{1-x}{2002}+1-\frac{x}{2003}+1\)

=> \(\frac{2-x}{2001}+1=\frac{1-x}{2002}+1+\frac{-x}{2003}+1\)

=> \(\frac{2-x}{2001}+\frac{2001}{2001}=\frac{1-x}{2002}+\frac{2002}{2002}+\frac{-x}{2003}+\frac{2003}{2003}\)

=> \(\frac{2003-x}{2001}=\frac{2003-x}{2002}+\frac{2003-x}{2003}\)

=> \(\frac{2003-x}{2001}-\frac{2003-x}{2002}-\frac{2003-x}{2003}=0\)

=> \(\left(2003-x\right)\left(\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

=> \(2003-x=0\)

=> \(x=2003\)

Vậy phương trình có tập nghiệm là \(S=\left\{2003\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
LL
Xem chi tiết
TH
Xem chi tiết
H24
Xem chi tiết
TH
Xem chi tiết
TH
Xem chi tiết
PH
Xem chi tiết
PL
Xem chi tiết
TK
Xem chi tiết
HN
Xem chi tiết