a,1,A=\(\sqrt{2x^2-8x+17}\)=\(\sqrt{2\left(x^2-4x+4\right)+9}\)=\(\sqrt{2\left(x-2\right)^2+9}\)
Có \(\left(x-2\right)^2\ge0\) vs mọi x
=> \(2\left(x-2\right)^2+9\ge9\) vs mọi x
<=> \(A=\sqrt{2\left(x-2\right)^2+9}\ge\sqrt{9}=3\)
Dấu "=" xảy ra <=> x=2
Vậy min A=3 <=> x=2
2,C=\(x-2\sqrt{x-4}+3\)( x\(\ge4\))
= \(\left(x-4\right)-2\sqrt{x-4}+1+6\)
=\(\left(\sqrt{x-4}-1\right)^2+6\)
Có \(\left(\sqrt{x-4}-1\right)^2\ge0\) với mọi \(x\ge4\)
=> C= \(\left(\sqrt{x-4}-1\right)^2+6\ge6\) với mọi x\(\ge4\)
Dấu "=" xảy ra <=> \(\sqrt{x-4}=1\) <=> \(x=5\) (t/m)
Vậy minC=6 <=>x=5
3,D=\(\sqrt{3x^2-12x+16}+\sqrt{x^4-8x^2+17}\)
=\(\sqrt{3\left(x^2-4x+4\right)+4}+\sqrt{x^4-8x^2+16+1}\)
=\(\sqrt{3\left(x-2\right)^2+4}+\sqrt{\left(x^2-4\right)^2+1}\)
Có \(\sqrt{3\left(x-2\right)^2+4}\ge\sqrt{0+4}=2\)
\(\sqrt{\left(x^2-4\right)^2+1}\ge\sqrt{0+1}=1\)
=> \(D=\sqrt{3\left(x-2\right)^2+4}+\sqrt{\left(x^2-4\right)^2+1}\ge2+1\)
<=> D \(\ge3\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}x-2=0\\x^2-4=0\end{matrix}\right.< =>\left\{{}\begin{matrix}x=2\\x^2=4\end{matrix}\right.\) (t/m)
=> x=2
Vậy minD=3 <=>x=2
b, B=\(\sqrt{-3x^2+18x+22}=\sqrt{49-3\left(x^2-6x+9\right)}=\sqrt{49-3\left(x-3\right)^2}\)
Có \(3\left(x-3\right)^2\ge0\) vs mọi x
<=> 49\(-3\left(x-3\right)^2\le49\) vs mọi x
<=> \(\sqrt{49-3\left(x-3\right)^2}\le\sqrt{49}=7\)
<=> B\(\le7\)
Dấu "=" xảy ra <=> x=3
Vậy max B=7 <=> x=3