a) Chứng minh rằng nếu 2(x+y) = 5(y+z) = 3(z+x)
Thì \(\dfrac{x-y}{4}=\dfrac{y-z}{5}\)
b) Cho \(x^2=yz\) . Chứng minh rằng \(\dfrac{x^2+y^2}{y^2+z^2}=\dfrac{x}{z}\)
Khuya rồi các bạn cố gắng giúp mk nhé !!! THANKS TRC
1. Cho \(B=\dfrac{1}{2}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}\cdot\cdot\cdot\dfrac{99}{100}\) Chứng minh rằng : \(\dfrac{1}{15}< B< \dfrac{1}{10}\)
2.Tìm x,y,z biết : \(\dfrac{x}{6}=\dfrac{y}{-4}=\dfrac{z}{3}\) và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\)
3.Chứng minh rằng nếu \(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\) thì \(\dfrac{a}{x+2y+z}=\dfrac{b}{2x+y-z}=\dfrac{c}{4x-4y+z}\)
4.Cho x,y,z,t là các số thực dương. Chứng minh rằng biểu thức sau không nhận giá trị nguyên :
\(M=\dfrac{x}{x+y+z}=\dfrac{y}{y+z+t}=\dfrac{z}{z+t+x}=\dfrac{t}{t+x+y}\)
5.Cho các số nguyên dương a,b,c,d,m,n,p thỏa mãn :\(a^2+b^2+c^2=m^2+n^2+p^2\) . Chứng minh rằng tổng \(a+b+c+m+n+p\) là hợp số
Cho các số hữu tỉ \(x=\dfrac{a}{b};y=\dfrac{c}{d};z=\dfrac{a+c}{b+d}\left(a,b,c,d\in Z;b>0;d>0\right)\)
Chứng minh rằng nếu x < y thì x < y < z .
Bài toán 3. Tìm x; y biết:
a. . 25 – y2 = 8( x – 2009)
b. x3 y = x y3 + 1997
c. x + y + 9 = xy – 7.
Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.
Bài toán 5. Chứng minh rằng:
1. Cho a, b, c, x, y, z khác 0 thỏa mãn bx=ay; cy=bx
Chứng minh rằng: \(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}=\dfrac{\left(a+b+c\right)^2}{x+y+z}\)
2. Tìm các giá trị x, y thỏa mãn \(\left|2x-3y\right|^{2015}+\left(x+y+x\right)^{2014}=0\)
3. Tìm các cặp số (x;y) thỏa mãn:\(\dfrac{y^4-x^4}{15}=\dfrac{y^4+x^4}{17}\) và x.y=2
Câu 1: Cho x, y, z là các số ≠ 0 và x+\(\dfrac{1}{y}\) =y+\(\dfrac{1}{z}\) =z+\(\dfrac{1}{x}\) . Chứng minh rằng
Hoặc x=y=z, hoặc x2y2z2=1.
Câu 2: Cho abc ≠ 0 và a+b+c ≠ 0. Tìm x, biết: \(\dfrac{a+b-x}{c}\) +\(\dfrac{a+c-x}{b}\) +\(\dfrac{b+c-x}{a}\) +\(\dfrac{4x}{a+b+c}\) =1
Bài 1 : Cho các số thực a,b,c khác 0 thỏa mãn \(a+b+c=2;a^2+b^2+c^2=4\) và \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)
Chứng minh rằng : xy+yz+zx=0
Bài 2 : Cho x khác -1;0;1 thỏa mãn \(\dfrac{a}{x-1}=\dfrac{b}{x}=\dfrac{c}{x+1}\) Chứng minh rằng : \(4\left(a-b\right)\left(b-c\right)=\left(a-c\right)^2\)
Bài 3 : Cho các số thực a,b,c khác 0 thỏa mãn \(\dfrac{x}{a+2b-c}=\dfrac{y}{2a+b+c}=\dfrac{z}{4b+c-4a}\) . Chứng minh rằng : \(\dfrac{a}{x+2y-z}=\dfrac{b}{2x+b+c}=\dfrac{c}{4y+z-4x}\)
GIÚP MÌNH ĐI CHIỀU 1 GIỜ ĐI HOK RỒI !!!
a) Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh rằng ( a + 2c )( b + d ) = ( a + c )( b + 2d )
b) Cho \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)
Chứng minh rằng biểu thức sau có giá trị nguyên : P = \(\dfrac{x+y}{z+t}=\dfrac{y+z}{t+x}=\dfrac{z+t}{x+y}=\dfrac{t+x}{y+z}\)
Bài toán 2. Tính tỉ số , biết:
Bài toán 3. Tìm x; y biết:
a. . 25 – y2 = 8( x – 2009)
b. x3 y = x y3 + 1997
c. x + y + 9 = xy – 7.
Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.
Bài toán 5. Chứng minh rằng:
Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x2 )2005
Bài toán 7. Cho a là số gồm 2n chữ số 1, b là số gồm n + 1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a + b + c + 8 là số chính phương.
Bài toán 8. Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.
Bài toán 9. Cho hai số tự nhiên a và b (a < b). Tìm tổng các phân số tối giản có mẫu bằng 7, mỗi phân số lớn hơn a nhưng nhỏ hơn b.
Bài toán 10. Chứng minh rằng: A = 1 + 3 + 5 + 7 + ... + n là số chính phương (n lẻ).
Bài toán 11. Tìm n biết rằng: n3 - n2 + 2n + 7 chia hết cho n2 + 1.
Bài toán 12. Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5.
làm ơn giúp mình