Bài 9: Nghiệm của đa thức một biến

CH

Bài 1:Biết đa thức f(x)=x3+ax2+bx-2cos nghiệm là -1 và 1.Tìm a,b và nghiệm còn lại của đa thức

Bài 2Cho f(x)=x2+ax +b.Biết f(1)=2; f(2)=3.Tính \(\dfrac{f\left(7\right)-f\left(8\right)}{15}\)

Bài 3:Cho đa thức P(x)=ax+b; Q(x)=bx+a(a;b khác 0).Chứng minh rằng: Nếu nghiệm của đa thức P(x)là số dương thì nghiệm của Q(x)cũng là số dương

NT
28 tháng 6 2022 lúc 19:38

Bài 1:

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}\left(-1\right)^3+a\cdot\left(-1\right)^2+b\cdot\left(-1\right)-2=0\\1^3+a\cdot1^2+b\cdot1-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=3\\a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-1\end{matrix}\right.\)

Vậy: \(f\left(x\right)=x^3+2x^2-x-2\)

Đặt f(x)=0

\(\Leftrightarrow x^2\left(x+2\right)-\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)

=>Nghiệm còn lại là x=-2

Bình luận (0)