Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

TT

bài 1 tìm giá trị lớn nhất, nhỏ nhất của các hàm số sau:
a) y = 3sinx - 1
​b) y = cos^2x - 3
c) y = 3sin2x - 5
d) y = \(\sqrt{sinx+3}-1\)

AA
25 tháng 8 2019 lúc 22:01

1) a) y = 3sinx - 1

Ta có: -1 ≤ sinx ≤ 1

<=> -3 ≤ 3sinx ≤ 3

<=> -4 ≤ 3sinx - 1 ≤ 2

Vậy GTLN of HS là 2 đạt đc khi sinx = 1 <=> x = π/2 + k2π

GTNN of HS là -4 đạt đc khi sinx = -1 <=> x = -π/2 + k2π

b) y = cos^2(2x) - 3

Ta có: 0 ≤ cos^2(2x) ≤ 1

<=> -3 ≤ cos^2(2x) - 3 ≤ -2

Vậy GTLN of HS là -2 đạt đc khi cos^2(2x) = 1

<=> x = kπ

GTNN of HS là -3 đạt đc khi cos^2(2x) = 0

<=> x = π/4 + kπ/2

c) y = 3sin2x - 5

Ta có: -1 ≤ sin2x ≤ 1

<=> -3 ≤ 3sin2x ≤ 3

<=> -8 ≤ 3sin2x - 5 ≤ -2

Vậy GTLN of HS là -2 đạt đc khi sin2x = 1 <=> x = π/4 + kπ

GTNN of HS là -8 đạt đc khi sin2x = -1 <=> x = -π/4 + kπ

d) y = [căn(sinx + 3)] - 1

Ta có: 0 ≤ căn(sinx) ≤ 1

<=> căn 3 ≤ căn(sinx + 3) ≤ 1+ căn 3

<=> -1 + căn 3 ≤ [căn(sinx + 3)] - 1 ≤ căn 3

Vậy GTLN of HS là căn 3 đạt đc khi sinx = 1 <=> x = π/2 + k2π

GTNN of HS là -1 + căn 3 đạt đc khi sinx = 0 <=> x = kπ

Bình luận (0)

Các câu hỏi tương tự
TY
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
DM
Xem chi tiết