Đại số lớp 7

LK

Bài 1: So sánh

a) \(2^{225}và3^{150}\)

b) \(2^{91}và5^{35}\)

c) \(3^{4000}và9^{2000}\)

d) \(2^{332}và3^{223}\)

Bài 2: Tính

a) \(\dfrac{120^3}{40^3}\) b) \(\dfrac{45^{10}.5^{20}}{75^{15}}\)

c) \(\dfrac{390^4}{130^4}\)

Giúp mik với tối mik đi hx rùi bạn nèo làm đúng mik tick

NH
29 tháng 6 2017 lúc 12:13

Bài 1 :

a) Ta có :

\(2^{225}=\left(2^3\right)^{75}=8^{75}\)

\(3^{150}=\left(3^2\right)^{75}=9^{75}\)

\(8^{75}< 9^{75}\Leftrightarrow2^{225}< 3^{150}\)

b) Ta có :

\(2^{91}=\left(2^{13}\right)^7=8192^7\)

\(5^{35}=\left(5^5\right)^7=3125^7\)

\(8192^7>3125^7\Leftrightarrow2^{91}>5^{35}\)

c)Ta có :

\(3^{4000}=\left(3^4\right)^{1000}=81^{1000}\)

\(9^{2000}=\left(9^2\right)^{1000}=81^{1000}\)

\(81^{1000}=81^{1000}\Leftrightarrow3^{4000}=9^{2000}\)

d) Ta có :

\(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)

\(3^{223}< 3^{222}=\left(3^2\right)^{111}=9^{111}\)

\(8^{111}< 9^{111}\Leftrightarrow2^{332}< 3^{223}\)

Bài 2 :

a) \(\dfrac{120^3}{40^3}=\left(\dfrac{120}{4}\right)^3=3^3=27\)

b) \(\dfrac{390^4}{130^4}=\left(\dfrac{390}{130}\right)^4=3^4=81\)

c) \(\dfrac{45^{10}.5^{20}}{75^{15}}=\dfrac{\left(3^2.5\right)^{10}.5^{20}}{\left(3.5^2\right)^{15}}=\dfrac{3^{20}.5^{10}.5^{20}}{3^{15}.5^{30}}=3^5=243\)

Bình luận (0)
NH
29 tháng 6 2017 lúc 13:13

Bài 1:

a.Ta có :

\(2^{225}=\left(2^3\right)^{75}=8^{75}\)

\(3^{150}=\left(3^2\right)^{75}=9^{75}\)

\(8^{75}< 9^{75}\) nên \(2^{225}< 3^{150}\)

b. Ta có :

\(2^{91}=\left(2^{13}\right)^7=8192^7\)

\(5^{35}=\left(5^5\right)^7=3125^7\)

\(8192^7>3125^7\) nên \(2^{91}>5^{35}\)

c. Ta có :

\(3^{4000}=\left(3^2\right)^{2000}=9^{2000}\)

\(9^{2000}=9^{2000}\) nên \(3^{4000}=9^{2000}\)

Bài 2:

a. \(\dfrac{120^3}{30^3}=\dfrac{\left(30.4\right)^3}{30^3}=\dfrac{30^3.4^3}{30^3}=4^3=64\)

b. \(\dfrac{45^{10}.5^{20}}{75^{15}}=\dfrac{\left(5.3^2\right)^{10}.5^{20}}{\left(3.5^2\right)^{15}}=\dfrac{5^{10}.3^{20}.5^{20}}{3^{15}.5^{30}}=\dfrac{5^{30}.3^{20}}{3^{15}.5^{30}}=3^5=243\)

c. \(\dfrac{390^4}{130^4}=\dfrac{\left(130.3\right)^4}{130^4}=\dfrac{130^4.3^4}{130^4}=3^4=81\)

Bình luận (1)
TL
29 tháng 6 2017 lúc 17:46

\(\text{Câu 1 :}\)

\(\text{a)}\) \(2^{225}\) \(\text{và}\) \(3^{150}\)

\(\text{Ta có :}\)\(2^{225}=\left(2^3\right)^{75}=8^{75}\)

\(3^{150}=\left(3^2\right)^{75}=9^{75}\)

\(\text{Mà}\) \(8^{75}< 9^{75}\)

\(\Rightarrow2^{225}< 3^{150}\)

\(\text{Vậy}\) \(2^{225}< 3^{150}\)

\(\text{b)}\) \(2^{91}\) \(\text{và}\) \(5^{35}\)

\(\text{Ta có :}\) \(2^{91}=\left(2^{13}\right)^7=8192^7\)

\(5^{35}=\left(5^5\right)^7=3125^7\)

\(\text{Mà}\) \(8192^7>3125^7\) \(\)

\(\Rightarrow2^{91}>5^{35}\)

\(\text{Vậy}\) \(2^{91}>5^{35}\)

\(\text{c)}\) \(3^{4000}\) \(\text{và}\) \(9^{2000}\)

\(\text{Ta có :}\) \(9^{2000}=\left(3^2\right)^{2000}=3^{4000}\)

\(Mà\) \(3^{4000}=3^{4000}\)

\(\text{Vậy}\) \(3^{4000}=9^{2000}\)

\(\text{d)}\) \(2^{332}\) \(\text{và}\) \(3^{223}\)

\(\text{Ta có : }\) \(2^{332}< 2^{333}\)

\(3^{223}>3^{222}\) \(\left(1\right)\)

\(\text{Ta lại có : }\) \(2^{333}=\left(2^3\right)^{111}=8^{111}\)

\(3^{222}=\left(3^2\right)^{111}=9^{111}\)

\(\text{Mà}\) \(8^{111}< 9^{111}\)

\(\Rightarrow2^{333}< 3^{222}\) \(\left(2\right)\)

\(\text{Từ}\) \(\left(1\right)\) \(\text{và}\) \(\left(2\right)\) \(\text{suy ra : }\)

\(2^{322}< 2^{333}< 3^{222}< 3^{223}\)

\(\Rightarrow2^{332}< 3^{223}\)

\(\text{Vậy}\) \(2^{332}< 3^{223}\)

\(\text{Câu 2 :}\)

\(\text{a)}\) \(\dfrac{120^3}{40^3}=\left(\dfrac{120}{40}\right)^3=3^3=27\)

\(\text{b)}\) \(\dfrac{45^{10}\cdot5^{20}}{75^{15}}=\dfrac{\left(9\cdot5\right)^{10}\cdot5^{20}}{\left(3\cdot25\right)^{15}}\)\(=\dfrac{9^{10}\cdot5^{10}\cdot5^{20}}{3^{15}\cdot25^{15}}\)\(=\dfrac{\left(3^2\right)^{10}\cdot5^{30}}{3^{15}\cdot\left(5^2\right)^{15}}\)\(=\dfrac{3^{20}\cdot5^{30}}{3^{15}\cdot5^{30}}\)\(=\dfrac{3^{20}}{3^{15}}\)\(=3^4=81\)

\(\text{c)}\) \(\dfrac{390^4}{130^4}=\left(\dfrac{390}{130}\right)^4=3^4=81\)

Bình luận (1)

Các câu hỏi tương tự
LQ
Xem chi tiết
PV
Xem chi tiết
LK
Xem chi tiết
SG
Xem chi tiết
TH
Xem chi tiết
TL
Xem chi tiết
AT
Xem chi tiết
NL
Xem chi tiết
HH
Xem chi tiết