Đại số lớp 7

YV

Bài 1: CMR:

a) \(\dfrac{\left(a-b\right)^3}{\left(c-d\right)^3}=\dfrac{3a^3+2b^3}{3c^3+2d^3}\)

b)\(\dfrac{a^{10}+b^{10}}{\left(a+b\right)^{10}}=\dfrac{c^{10}+d^{10}}{\left(c+d\right)^{10}}\)

c)\(\dfrac{a^{2017}}{b^{2017}}=\dfrac{\left(a-c\right)^{2017}}{\left(b-d\right)^{2017}}\)

Bài 2: a) Cho: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\) và a,b,c\(\ne\)0;a+b+c\(\ne\)0

So sánh a,b,c

b) Cho \(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\) và x,y,z\(\ne\)0;x+y+z\(\ne\)0

Tính: \(\dfrac{x^{333}.y^{666}}{z^{999}}\)

c) Cho \(ac=b^2;ab=c^2\left(a+b+c\ne0\right)\)

Tính \(\dfrac{b^{333}}{c^{111}.a^{222}}\)

PA
14 tháng 7 2017 lúc 16:12

Bài 2:

a)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)

=> a = b = c

b)

\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\)

=> x = y = z (theo a)

Thay x = y = z vào biểu thức, ta có:

\(M=\dfrac{x^{333}.x^{666}}{x^{999}}=1\)

c)

\(ac=b^2\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\)

\(ab=c^2\Rightarrow\dfrac{b}{c}=\dfrac{c}{a}\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\Rightarrow a=b=c\)

Thay a = b = c vào biểu thức, ta có:

\(M=\dfrac{a^{333}}{a^{111}.a^{222}}=1\)

Bình luận (1)
DM
14 tháng 7 2017 lúc 16:26

Bài 1 chưa nhìn kĩ lắm nhưng thấy câu c tự dưng thọt vào cái chứng minh ngay hai cái đó bằng nhau luôn à ? c và d thỏa mãn điều kiện gì ?

Chắc câu a b cũng thiếu đk nốt nhìn nhói tim quá :v

Bình luận (1)

Các câu hỏi tương tự
NH
Xem chi tiết
VT
Xem chi tiết
TK
Xem chi tiết
TM
Xem chi tiết
ST
Xem chi tiết
TM
Xem chi tiết
HO
Xem chi tiết
NC
Xem chi tiết
TK
Xem chi tiết