Violympic toán 7

DN

Bài 1: Cho tam giác đều ABC. Điểm M ở miền trong của tam giác sao cho MA = 1 cm, CM = 2 cm, BM là độ dài cạnh hình vuông diện tích là 3 cm². Lấy D thuộc mặt phẳng bờ BC không chứa A sao cho tam giác CMD đều.

a) Chứng minh rằng: ΔCAM = ΔCBD.

b) Chứng minh rằng: ΔMBD là tam giác vuông.

c) Tính góc BMC, góc AMB. Suy ra A, M, D thẳng hàng.

d) Tìm diện tích hình vuông có cạnh BC.

TL
3 tháng 4 2020 lúc 15:50

a)

– Xét ΔCAM và ΔCBD ta có:

+) AC = BC (ΔABC đều)

+) ∠ACM + ∠MCB = 60º, ∠BCD + ∠MCB = 60º nên suy ra ∠ACM = ∠BCD

+) MC = DC (ΔMCD đều)

=> ΔCAM = ΔCBD (c.g.c) (đpcm)

b) – Theo câu a, ΔCAM = ΔCBD (c.g.c)

=> BD = AM = 1 (cm) (Hai cạnh tương ứng)

=> ∠AMC = ∠BDC (Hai góc tương ứng) (1)

– Xét ΔBDM ta có:

AM = 1 cm,

BM là cạnh của hình vuông có diện tích bằng 3 cm². Nên suy ra: BM = √3 (cm).

MD = MC = 2 cm (ΔMCD đều).

Ta có: BM² + BD² = 1 + (√3)² = MD²

– Theo định lý Pi-ta-go đảo, suy ra: ΔBDM là tam giác vuông tại B (đpcm).

c) – Theo câu b ta có: ΔBDM là tam giác vuông tại B, mà BD = 1 cm, DM = 2 cm,

=> DM = 2BD nên suy ra: ∠BMD = 30º, mà ΔMCD là tam giác đều nên ∠CMD = 60º,

=> ∠BMC = 30º + 60º = 90º.

– Ta có: ∠BMD + ∠BDM = 90º

=> ∠BDM = 90º – 30º = 60º, mà ΔMCD là tam giác đều nên ∠MDC = 60º,

=> ∠BDC = ∠BDM + ∠MDC = 60º + 60º = 120º.

Từ (1) suy ra: ∠AMC = ∠BDC = 120º.

=> ∠AMB = 360º – (∠AMC + ∠BMC) = 360º – (120º + 90º) = 150º.

– Ta có: ∠AMD = ∠AMC + ∠DMC = 120º + 60º = 180º

=> Hai tia MA và MD là hai tia đối nhau

=> 3 điểm A, M, D thẳng hàng.

d) Theo câu c, ta có: ∠BMC = 90º nên suy ra: ΔBMC là tam giác vuông tại B.

=> BC² = BM² + MC² = 3 + 4 = 7.

=>Diện tích hình vuông có cạnh BC là S = BC² = 7 (cm²).

Hình tự vẽ!

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
0L
Xem chi tiết
MP
Xem chi tiết
37
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
LV
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết