Bài 2:
x2-4x+7=(x2-4x+4)+3=(x-2)2+3
Ta có: (x-2)2> hoặc = 0 với mọi x
=>(x-2)2+3> hoặc = 3> 0 với mọi x
Vậy x2-4x+7>0 với mọi số thực x
Bài 2:
x2-4x+7=(x2-4x+4)+3=(x-2)2+3
Ta có: (x-2)2> hoặc = 0 với mọi x
=>(x-2)2+3> hoặc = 3> 0 với mọi x
Vậy x2-4x+7>0 với mọi số thực x
bài 1:cho tam giác abc có 3 góc nhọn , trực tâm h . đường thẳng vuông góc với ab kẻ từ b cắt đường thẳng vuông góc với ac kẻ từ c tại d
a) cm tứ giác bhcd là hbh
b)gọi m là tđ bc , o là tđ ad.cm 2om=ah
c)gọi g là trọng tâm tam giác abc. cm h,g,o thẳng hàng
bài 2:cho hình vuông abcd , m là tđ ab, p là giao cm , da
a)cm apbc là hbh và bcdp là hình thang vuông
b)cm 2Sbcdp=3Sapbc
c)gọi n là tđ bc,q là giao dn , cm.cm aq=ab
Bài 3:Cho tam giác abc vuông ở a. lấy điểm m nằm trên cạnh bc, hạ md và me vuông với ab và ac. lấy điểm i đối xứng với d qua a , k đối xứng với e qua m
a)cm diek là hbh
b)cm ik,de , am giao tại 1 điểm
c)Tìm vị trí của m trên bc để adme là hình vuông
d)khi m là chân đường cao hạ từ a xuống bc , gọi j là tđ bc. cm aj⊥de
Cho hình chữ nhật ABCD. Có O là giao điểm 2 đường chéo AC và BC , Gọi M là TĐ của CD.
a) C/m: AOMD là hình thang vuông.
b) Đường thẳng qua A và song song vs BD cắt đường thẳng OM tại N. C/m tứ giác ANOD là hbh.
cho hình vuông ABCD, M là trung điểm của cạnh AB, P là giao điểm của ai tia CM và DA
a) chứng minh tứ giác APBC là hình bình hành và tứ giác BCDP là hình thang vuông
b) Chứng minh 2SBCDP=3SAPBC
c) gọi N là trung điểm của BC, Q là giao điểm của DN và CM.
Chứng minh AQ=QB.
Cho tam giác ABC vuông tại A, có BC=a không đổi. Kẻ đường cao AH. Gọi E, F lần lượt là hình chiếu của H lên các cạnh AB và AC
a) Cm tứ giác AEHF là hình chữ nhật
b) Gọi M là trung điểm của BH. CM:
c) Gọi N là trung điểm của CH. Tứ giác MEFN là hình gì? Hãy chứng minh
d) Tìm điều kiện của tam giác vuông ABC để EF có độ dài lớn nhất
Cho tam giác ABC vuông tại A, có BC=a không đổi. Kẻ đường cao AH. Gọi E, F lần lượt là hình chiếu của H lên các cạnh AB và AC
a) Cm tứ giác AEHF là hình chữ nhật
b) Gọi M là trung điểm của BH. CM: \(\widehat{MEF}\)
c) Gọi N là trung điểm của CH. Tứ giác MEFN là hình gì? Hãy chứng minh
d) Tìm điều kiện của tam giác vuông ABC để EF có độ dài lớn nhất
Cho hình bình hành ABCD có E, F lần lượt là trung điểm của AB và CD. Gọi giao điểm của AC với DE và BF theo thứ tự là M và N
a) CM: các tứ giác DEBF, EMFN là hình bình hành
b) Hình bình hành ABCD cần thêm điều kiện gì để tứ giác MENF là hình thoi
Cho tam giác ABC nhọn, các đường cao BE và CF cắt nhau tại H. Đường thẳng vuông góc với AB tại B và đường thẳng vuông góc với AC tại C cắt nhau ở D
a) Tứ giác BHCD là hình gì? Vì sao?
b) Gọi O, M lần lượt là trung điểm của AD và BC. CM: 3 điểm H, M, D thẳng hàng và HA=2MO
c) Tam giác ABC cần có thêm điều kiện gì để BHCD là hình thoi
Cho tam giác ABC vuông tại A, có BC=a không đổi. Kẻ đường cao AH. Gọi E, F lần lượt là hình chiếu của H lên các cạnh AB và AC
a) Cm tứ giác AEHF là hình chữ nhật
b) Gọi M là trung điểm của BH. CM: \(\widehat{MEF}=90\) độ
c) Gọi N là trung điểm của CH. Tứ giác MEFN là hình gì? Hãy chứng minh
d) Tìm điều kiện của tam giác vuông ABC để EF có độ dài lớn nhất
(Các bạn chỉ cần làm ý c thôi nha)
Cho hình vuông ABCD. Gọi M là trung điểm AB; N là trung điểm CD.
a) Tứ giác BMDN là hình gì? Vì sao?
b) CM: \(S_{ADM}=\dfrac{1}{4}.S_{ABCD}\)
c) Gọi trung điểm BC là P, AP cắt BN tại I. Chứng minh: DI=AB