ăn cơm đã , chiều giải cho
ăn cơm đã , chiều giải cho
Bài 1:Cho 3 số a,b,c thỏa mãn điều kiện abc=2013.Tính giá trị biểu thức :
P=\(\frac{2013a^2bc}{ab+2013a+2013}+\frac{ab^2c}{bc+b+2013}+\frac{abc^2}{ac+c+1}\)
Cho a,b,c thỏa mãn:\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
Tính giá trị của biểu thức:
\(Q=\left(a^{27}+b^{27}\right)\left(b^{41}+c^{41}\right)\left(c^{2013}+a^{2013}\right)\)
Cho abc = 2. Rút gọn biểu thức M= \(\frac{a}{ab+a+2}+\frac{b}{bc+b+1}+\frac{c}{ac+2c+2}\)
a)Cho 3 số a,b,c thỏa mãn abc=2019. Tính giá trị biểu thức:
M=\(\frac{2019a}{ab+2019a+2019}+\frac{b}{bc+b+2019}+\frac{c}{ac+c+1}\)
b)Cho b,c ≠0 và a+b+c=abc và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
Cminh \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
Cho biểu thức \(A=\frac{1}{3+2a+b+ab}+\frac{1}{3+2b+c+bc}+\frac{1}{3+2c+a+ac}\) .Biết \(a,b,c\) là các số thực làm cho $A$ xác định và \(ab+bc+ac+a+b+c+abc=0\).Tính gía trị của A.
Mn giúp mk với, mk đang cần gấp lắm sắp thi hsg rồi.
Cho các số a, b, c khác 0 thỏa mãn: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
Tính \(S=\dfrac{2013a^2-2014}{a^2+2bc}+\dfrac{2013b^2-2014}{b^2+2ca}+\dfrac{2013c^2-2014}{c^2+2ab}\)
1) Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) . Tính giá trị biểu thức: D= \(\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}\)
2) Cho a+b+c=\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\); abc khác 0. Ch/m \(a^6+b^6+c^6=3a^2b^2c^2\)
cho a,b,c thỏa mãn \(a+b+c=7,a^2+b^2+c^2=23,abc=3\). Tính giá trị biểu thức :
\(A=\frac{1}{ab+c-6}+\frac{1}{bc+a-6}+\frac{1}{ca+b-6}\)
1,cho a,b,c là các số dương thỏa mãn abc=1
Tính giá trị của biểu thức \(M=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)