Đại số lớp 6

HD

Bài 1:

a) M=\(\dfrac{2}{3.5}\) + \(\dfrac{2}{5.7}\) + \(\dfrac{2}{7.9}\) +......+ \(\dfrac{2}{97.99}\)

b) Cho A=\(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) +....... + \(\dfrac{1}{2000^2}\) + \(\dfrac{1}{2011^2}\) + \(\dfrac{1}{2012^2}\)

CMR:A ko phải là số tự nhiên.

Giúp mình nha!vui

NT
26 tháng 5 2017 lúc 15:18

a, \(M=\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{97.99}\)

\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\)

\(=\dfrac{1}{3}-\dfrac{1}{99}\)

\(=\dfrac{32}{99}\)

Vậy \(M=\dfrac{32}{99}\)

b, Ta có: \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2012^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2011.2012}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2011}-\dfrac{1}{2012}\)

\(=1-\dfrac{1}{2012}< 1\) (1)

Do mỗi phân số đều lớn hơn 0 nên \(A>0\) (2)

Từ (1), (2) \(\Rightarrow0< A< 1\)

\(\Rightarrow A\notin N\left(đpcm\right)\)

Vậy...

Bình luận (3)
ND
26 tháng 5 2017 lúc 15:21

a, \(M=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\\ =\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{2}{97}-\dfrac{2}{99}\\ =\dfrac{1}{3}-\dfrac{2}{99}=\dfrac{31}{99}\)

Bình luận (1)
LB
26 tháng 5 2017 lúc 19:48

A<\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2011.2012}+\dfrac{1}{2012.2013}\)

A<\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}+\dfrac{1}{2012}-\dfrac{1}{2013}\)

A<\(\dfrac{1}{2}-\dfrac{1}{2013}\)

A<\(\dfrac{2011}{4026}< 1\)

Vì A bé hơn 1 nên A không phải là số tự nhiên

Bình luận (1)
HD
26 tháng 5 2017 lúc 16:17

a) M=\(\dfrac{2}{3.5}\) + \(\dfrac{2}{5.7}\) + \(\dfrac{2}{7.9}\) + ........+\(\dfrac{2}{97.99}\)

= \(\dfrac{5-3}{3.5}\) + \(\dfrac{7-5}{5.7}\) + \(\dfrac{9-7}{7.9}\) + .........+ \(\dfrac{99-97}{97.99}\)

=\(\dfrac{5}{3.5}\) \(-\) \(\dfrac{3}{3.5}\) + \(\dfrac{7}{5.7}\) \(-\) \(\dfrac{5}{5.7}\) + \(\dfrac{9}{7.9}\) \(-\) \(\dfrac{7}{7.9}\) + .......+ \(\dfrac{99}{97.99}\) \(-\) \(\dfrac{97}{97.99}\)

=\(\dfrac{1}{3}\) \(-\) \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) \(-\) \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) \(-\) \(\dfrac{1}{9}\) + .....+ \(\dfrac{1}{97}\) \(-\) \(\dfrac{1}{99}\)

=\(\dfrac{1}{3}\) + \(\dfrac{1}{99}\)

=\(\dfrac{33-1}{99}\)=\(\dfrac{32}{99}\)

b)Cho A =\(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) +.......+\(\dfrac{1}{2000^2}\) + \(\dfrac{1}{2011^2}\) + \(\dfrac{1}{2012^2}\)

Ta có: A > 0 (1)

Ta có:\(\dfrac{1}{2^2}\) =\(\dfrac{1}{2.2}\) <\(\dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}\)=\(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\)

\(\dfrac{1}{4^2}\)=\(\dfrac{1}{4.4}\) < \(\dfrac{1}{3.4}\)

+.......

\(\dfrac{1}{2010^2}\) = \(\dfrac{1}{2010.2010}\) < \(\dfrac{1}{2009.2010}\)

\(\dfrac{1}{2011^2}\) =\(\dfrac{1}{2011.2011}\) <\(\dfrac{1}{2010.2011}\)

\(\dfrac{1}{2012^2}\)=\(\dfrac{1}{2012.2012}\) <\(\dfrac{1}{2011.2012}\)

=>A < \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) +......+ \(\dfrac{1}{2009.2010}\) + \(\dfrac{1}{2010.2011}\) + \(\dfrac{1}{2011.2012}\)

=>A < 1\(-\) \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) \(-\) \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) \(-\) \(\dfrac{1}{4}\) + .....+ \(\dfrac{1}{2009}\)\(-\) \(\dfrac{1}{2010}\) + \(\dfrac{1}{2010}\) \(-\) \(\dfrac{1}{2011}\) + \(\dfrac{1}{2011}\) + \(\dfrac{1}{2012}\)

=> A< 1 \(-\) \(\dfrac{1}{2012}\)

=> A < \(\dfrac{2012-1}{2012}\)

=> A < \(\dfrac{2011}{2012}\) < 1

=> A < 1 (2)

Từ (1) và (2) => 0 < A < 1

Vậy A không phải là một số tự nhiên.

Bình luận (4)

Các câu hỏi tương tự
CX
Xem chi tiết
CH
Xem chi tiết
TD
Xem chi tiết
TN
Xem chi tiết
WT
Xem chi tiết
AM
Xem chi tiết
MM
Xem chi tiết
KL
Xem chi tiết
VH
Xem chi tiết