Đại số lớp 8

UN

B1: Chứng minh rằng:Nếu 10x2+5xy-3y2=0 thì \(\frac{2x-y}{3x-y}+\frac{5y-x}{3x+y}=-3\)

B2:Tìm giá trị nguyên của x sao cho:\(\frac{1}{x}+\frac{1}{x+2}+\frac{x-2}{x^2+2x}\)nhận giá trị nguyên

DM
11 tháng 2 2017 lúc 21:59

\(A=\frac{2x-y}{3x-y}+\frac{5y-x}{3x+y}\)

\(=\frac{\left(2x-y\right)\left(3x+y\right)+\left(5y-x\right)\left(3x-y\right)}{\left(3x-y\right)\left(3x+y\right)}\)

\(=\frac{3x^2+15xy-6y^2}{9x^2-y^2}\)

\(=\frac{3\left(x^2+5xy-2y^2\right)}{9x^2-y^2}\)

\(=\frac{3\left(10x^2+5xy-3y^2-9x^2+y^2\right)}{9x^2-y^2}\)

\(=-\frac{3\left(9x^2-y^2\right)}{9x^2-y^2}\)

= - 3 (đpcm)

~~~

\(A=\frac{1}{x}+\frac{1}{x+2}+\frac{x-2}{x^2+2x}\)

\(=\frac{x+2+x+x-2}{x^2+2x}\)

\(=\frac{3x}{x\left(x+2\right)}\)

\(=\frac{3}{x+2}\)

\(A\in Z\)

\(\Leftrightarrow3⋮x+2\)

\(\Leftrightarrow x+2\in\text{Ư}\left(3\right)=\left\{-3:-1;1;3\right\}\)

\(\Leftrightarrow x\in\left\{-5;-3;-1;1\right\}\)

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
TD
Xem chi tiết
H24
Xem chi tiết
DD
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
PD
Xem chi tiết
HK
Xem chi tiết
NB
Xem chi tiết