Chương I - Căn bậc hai. Căn bậc ba

TT

B1: Cho a+b+c+d=2. CMR \(a^2+b^2+c^2+d^2\ge1\)

B2: Cho 2 số thực a,b khác 0.CMR \(\frac{a^2}{1+16a^4}+\frac{b^2}{1+b^4}\le\frac{1}{4}\)

B3: Cho x,y>0 và x+y\(\ge4\). CMR 2x+3y+\(\frac{6}{x}+\frac{10}{y}\ge18\)

GIÚP MÌNH NỮA NHA, CHIỀU HỌC ỒI

AH
17 tháng 7 2019 lúc 15:01

Bài 1:

Áp dụng BĐT Bunhiacopxky:

\((a^2+b^2+c^2+d^2)(1+1+1+1)\geq (a+b+c+d)^2\)

\(\Leftrightarrow a^2+b^2+c^2+d^2\geq \frac{(a+b+c+d)^2}{4}=\frac{2^2}{4}=1\) (đpcm)

Dấu "=" xay ra khi \(a=b=c=d=\frac{1}{2}\)

Bình luận (0)
AH
17 tháng 7 2019 lúc 15:05

Bài 2:

Bạn xem lại đề:

Áp dụng BĐT Cô-si cho các số không âm ta có:

\(16a^4+1\geq 2\sqrt{16a^4.1}=8a^2\Rightarrow \frac{a^2}{1+16a^4}\leq \frac{a^2}{8a^2}=\frac{1}{8}(1)\)

\(b^4+1\geq 2\sqrt{b^4.1}=2b^2\Rightarrow \frac{b^2}{1+b^4}\leq \frac{b^2}{2b^2}=\frac{1}{2}(2)\)

Từ \((1);(2)\Rightarrow \frac{a^2}{1+16a^4}+\frac{b^2}{1+b^4}\leq \frac{1}{8}+\frac{1}{2}=\frac{5}{8}\) chứ không phải $\frac{1}{4}$

Nếu bạn muốn kết quả là $\frac{1}{4}$ thì cần thay $b^4$ bằng $16b^4$ và làm tương tự như trên.

Bình luận (0)
AH
17 tháng 7 2019 lúc 15:10

Bài 3:

Ta có:

\(2x+3y+\frac{6}{x}+\frac{10}{y}=\frac{1}{2}(x+y)+(\frac{3}{2}x+\frac{6}{x})+(\frac{5}{2}y+\frac{10}{y})\)

Áp dụng BĐT Cô-si cho các số dương:

\(\frac{3}{2}x+\frac{6}{x}\geq 2\sqrt{\frac{3}{2}x.\frac{6}{x}}=6(1)\)

\(\frac{5}{2}y+\frac{10}{y}\geq 2\sqrt{\frac{5}{2}y.\frac{10}{y}}=10(2)\)

\(\frac{1}{2}(x+y)\geq \frac{1}{2}.4=2(3)\) do $x+y\geq 4$

Từ \((1);(2);(3)\Rightarrow 2x+3y+\frac{6}{x}+\frac{10}{y}\geq 6+10+2=18\)(đpcm)

Dấu "=" xảy ra khi $x=y=2$.

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
NL
Xem chi tiết
HP
Xem chi tiết
AD
Xem chi tiết
AV
Xem chi tiết
HS
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
ML
Xem chi tiết