Ôn tập toán 6

PL

@Phan Đức Gia Linh _ Xin cảm ơn những bạn đã quan tâm tới câu hỏi của mình!

Tìm x, y và z biết:

1) |x - 2| + |2y - 5| = 0

2) |3y - 2| + |xy - 6| = 0

3) \(\left|x-\dfrac{1}{2}\right|\) + \(\left|2y-\dfrac{1}{3}\right|\) + |4z - 5| \(\le\) 0

Các bạn cố gắng giải đầy đủ giúp mình!

MS
28 tháng 7 2017 lúc 12:33

\(\left|x-2\right|+\left|2y-5\right|=0\)

\(\left\{{}\begin{matrix}\left|x-2\right|\ge0\forall x\\\left|2y-5\right|\ge0\forall y\end{matrix}\right.\)

\(\left|x-2\right|+\left|2y-5\right|\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left|x-2\right|=0\Rightarrow x=2\\\left|2y-5\right|=0\Rightarrow2y=5\Rightarrow y=\dfrac{5}{2}\end{matrix}\right.\)

\(\left|3y-2\right|+\left|xy-6\right|=0\)

\(\left\{{}\begin{matrix} \left|3y-2\right|\ge0\forall y\\\left|xy-6\right|\ge0\forall x;y\end{matrix}\right.\)

\(\Rightarrow\left|3y-2\right|+\left|xy-6\right|\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left|3y-2\right|=0\Rightarrow3y=2\Rightarrow y=\dfrac{3}{2}\\\left|xy-6\right|=0\Rightarrow\dfrac{3}{2}x=6\Rightarrow x=4\end{matrix}\right.\)

\(\left|x-\dfrac{1}{2}\right|+\left|2y-\dfrac{1}{3}\right|+\left|4z-5\right|\le0\)

\(\left\{{}\begin{matrix}\left|x-\dfrac{1}{2}\right|\ge0\forall x\\\left|2y-\dfrac{1}{3}\right|\ge0\forall y\\ \left|4z-5\right|\ge0\forall z\end{matrix}\right.\)

\(\Rightarrow\left|x-\dfrac{1}{2}\right|+\left|2y-\dfrac{1}{3}\right|+\left|4z-5\right|\ge0\)

\(\Rightarrow\left[{}\begin{matrix}\left|x-\dfrac{1}{2}\right|+\left|2y-\dfrac{1}{3}\right|+\left|4z-5\right|\ge0\\\left|x-\dfrac{1}{2}\right|+\left|2y-\dfrac{1}{3}\right|+\left|4z-5\right|\le0\end{matrix}\right.\)

\(\Rightarrow\left|x-\dfrac{1}{2}\right|+\left|2y-\dfrac{1}{3}\right|+\left|4z-5\right|=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left|x-\dfrac{1}{2}\right|=0\Rightarrow x=\dfrac{1}{2}\\\left|2y-\dfrac{1}{3}\right|=0\Rightarrow2y=\dfrac{1}{3}\Rightarrow y=\dfrac{1}{6}\\\left|4z-5\right|=0\Rightarrow4z=5\Rightarrow z=\dfrac{5}{4}\end{matrix}\right.\)

Bình luận (1)

Các câu hỏi tương tự
PL
Xem chi tiết
PL
Xem chi tiết
PL
Xem chi tiết
PL
Xem chi tiết
PL
Xem chi tiết
PL
Xem chi tiết
PL
Xem chi tiết
PL
Xem chi tiết
LA
Xem chi tiết