Đặt \(L=\sqrt{\dfrac{x^2+4y^2}{2}}+\sqrt{\dfrac{x^2+2xy+4y^2}{3}}\)
\(L=\sqrt{\dfrac{x^2}{2}+\dfrac{\left(2y\right)^2}{2}}+\sqrt{\dfrac{\left(x+y\right)^2}{3}+\dfrac{y^2}{1}}\)
Áp dụng bđt Cauchy-Schwarz dạng Engel vào L ta có:
\(L\ge\sqrt{\dfrac{\left(x+2y\right)^2}{2+2}}+\sqrt{\dfrac{\left(x+y+y\right)^2}{3+1}}\)
\(L\ge\dfrac{x+2y}{2}+\dfrac{x+2y}{2}=x+2y\left(đpcm\right)\)