Ta có : \(A-1=\frac{9^{11}+1}{9^{11}-7}-1=\frac{8}{9^{11}-7}\) ; \(B-1=\frac{9^{12}+3}{9^{12}-5}-1=\frac{8}{9^{12}-5}\)
Cần so sánh : \(9^{11}-7\) và \(9^{12}-5\)
Ta viết : \(9^{12}-5=9^{11}.9-5=9^{11}.\left(1+8\right)-5=\left(9^{11}-7\right)+\left(8.9^{11}+2\right)\)
Xét : \(\left(9^{12}-5\right)-\left(9^{11}-7\right)=\left(9^{11}-7\right)+\left(8.9^{11}+2\right)-\left(9^{11}-7\right)=8.9^{11}+2>0\)
\(\Rightarrow9^{12}-5>9^{11}-7\)
Do đó : \(B-1>A-1\Rightarrow B< A\)