\(a,\dfrac{3x-1}{xy}+\dfrac{2x-1}{xy}\\ =\dfrac{3x-1+2x-1}{xy}\\ =\dfrac{5x-2}{xy}\\ b,\dfrac{3x}{x^2+1}+\dfrac{-3x+1}{x^2+1}\\=\dfrac{3x-3x+1}{x^2+1}\\ =\dfrac{1}{x^2+1}\)
\(a,\dfrac{3x-1}{xy}+\dfrac{2x-1}{xy}\\ =\dfrac{3x-1+2x-1}{xy}\\ =\dfrac{5x-2}{xy}\\ b,\dfrac{3x}{x^2+1}+\dfrac{-3x+1}{x^2+1}\\=\dfrac{3x-3x+1}{x^2+1}\\ =\dfrac{1}{x^2+1}\)
Thực hiện các phép tính sau:
\(a)\frac{1}{x} + \frac{2}{{x + 1}} + \frac{3}{{x + 2}} - \frac{1}{x} - \frac{2}{{x + 1}} - \frac{3}{{x + 2}}\)
\(b)\frac{{2{\rm{x}} - 1}}{x} + \frac{{1 - x}}{{2{\rm{x}} + 1}} + \frac{3}{{{x^2} - 9}} + \frac{{1 - 2{\rm{x}}}}{x} + \frac{{x - 1}}{{2{\rm{x}} + 1}} - \frac{3}{{x + 3}}\)
Thực hiện các phép tính:
\(a)\frac{{{x^2} - 3{\rm{x}} + 1}}{{2{{\rm{x}}^2}}} + \frac{{5{\rm{x}} - 1 - {x^2}}}{{2{{\rm{x}}^2}}}\)
\(b)\frac{y}{{x - y}} + \frac{x}{{x + y}}\)
\(c)\frac{x}{{2{\rm{x}} - 6}} + \frac{y}{{2{\rm{x}}\left( {3 - x} \right)}}\)
Thực hiện các phép tính:
\(a)\frac{{3 - 2{\rm{x}}}}{{x - 1}} - \frac{{2 + 5{\rm{x}}}}{{x - 1}}\)
\(b)\frac{1}{{4{{\rm{x}}^2}y}} - \frac{1}{{6{\rm{x}}{y^2}}}\)
Thực hiện các phép tính sau:
\(a)\frac{{5 - 3{\rm{x}}}}{{x + 1}} - \frac{{ - 2 + 5{\rm{x}}}}{{x + 1}}\)
\(b)\frac{x}{{x - y}} - \frac{y}{{x + y}}\)
\(c)\frac{3}{{x + 1}} - \frac{{2 + 3{\rm{x}}}}{{{x^3} + 1}}\)
Thực hiện các phép tính sau;
\(a)\frac{{{x^2} + 4{\rm{x}} + 4}}{{{x^2} - 4}} + \frac{x}{{2 - x}} + \frac{{4 - x}}{{5{\rm{x}} - 10}}\)
\(b)\frac{x}{{{x^2} + 1}} - \left( {\frac{3}{{x + 6}} + \frac{{x - 2}}{{x + 4}}} \right) + \left[ {\frac{3}{{x + 6}} - \left( {\frac{1}{{{x^2} + 1}} - \frac{{x - 2}}{{x + 4}}} \right)} \right]\)
Tính tổng: \(\frac{5}{{2{{\rm{x}}^2}\left( {6{\rm{x}} + y} \right)}} + \frac{3}{{5{\rm{x}}y\left( {6{\rm{x}} + y} \right)}}\)
Thực hiện các phép tính sau:
\(a)\frac{{x - y}}{{xy}} + \frac{{y - z}}{{yz}} + \frac{{z - x}}{{z{\rm{x}}}}\)
\(b)\frac{x}{{{{\left( {x - y} \right)}^2}}} + \frac{y}{{{y^2} - {x^2}}}\)
Trừ các tử thức và giữ nguyên mẫu thức để tính: \(\frac{{x - y}}{{x + 1}} - \frac{{2{\rm{x}} + 3}}{{x + 1}}\)
Rút gọn biểu thức: \(P = \frac{1}{x} + \frac{1}{y} + \frac{1}{z} - \frac{1}{x} - \frac{1}{y}\)