Ôn tập toán 6

HL

A=\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+.....+\frac{3}{2015.2017}\)

cái đề này là tính nha mấy bạn

 

PD
16 tháng 5 2016 lúc 20:18

A=3/1*3+3/3*5+3/5*7+...+3/2015*2017

A=3/2*(2/1*3+2/3*5+2/5*7+...+2/2015*2017)

A=3/2*(1-1/3+1/3-1/5+1/5-1/7+...+1/2015-1/2017)

A=3/2*(1-1/2017)

A=3/2*2016/2017

A=3024/2017

Bình luận (0)
NT
16 tháng 5 2016 lúc 20:29

A= \(\frac{3}{1.3}\)+\(\frac{3}{3.5}\)+\(\frac{3}{5.7}\)+....+\(\frac{3}{2015.2017}\)

A= \(\frac{3}{2}\).(\(\frac{2}{1.3}\)+\(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+...+\(\frac{2}{2015.2017}\))

A= \(\frac{3}{2}\).( 1- \(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{7}\)+... \(\frac{1}{2015}\)\(\frac{1}{2017}\))

A= \(\frac{3}{2}\).(1- \(\frac{1}{2017}\))

A= \(\frac{3}{2}\)\(\frac{2016}{2017}\)

A= \(\frac{3024}{2017}\)

Bình luận (0)

Các câu hỏi tương tự
NV
Xem chi tiết
DT
Xem chi tiết
VT
Xem chi tiết
NO
Xem chi tiết
AJ
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
NT
Xem chi tiết