a)
\(A=\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{2006.2009}\)
\(=\frac{8-5}{5.8}+\frac{11-8}{8.11}+\frac{14-11}{11.14}+....+\frac{2009-2006}{2006.2009}\)
\(=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{2006}-\frac{1}{2009}\)
\(=\frac{1}{5}-\frac{1}{2009}=\frac{2004}{10045}\)
b)
\(B=\frac{1}{6.10}+\frac{1}{10.14}+...+\frac{1}{402.406}\)
\(\Rightarrow 4B=\frac{4}{6.10}+\frac{4}{10.14}+...+\frac{4}{402.406}\)
\(4B=\frac{10-6}{6.10}+\frac{14-10}{10.14}+...+\frac{406-402}{402.406}\)
\(4B=\frac{1}{6}-\frac{1}{10}+\frac{1}{10}-\frac{1}{14}+...+\frac{1}{402}-\frac{1}{406}\)
\(4B=\frac{1}{6}-\frac{1}{406}=\frac{100}{609}\Rightarrow B=\frac{25}{609}\)
c)
\(C=\frac{10}{7,12}+\frac{10}{12.17}+...+\frac{10}{502.507}\)
\(\Rightarrow \frac{C}{2}=\frac{5}{7.12}+\frac{5}{12.17}+...+\frac{5}{502.507}\)
\(\frac{C}{2}=\frac{12-7}{7.12}+\frac{17-12}{12.17}+...+\frac{507-502}{502.507}\)
\(\frac{C}{2}=\frac{1}{7}-\frac{1}{12}+\frac{1}{12}-\frac{1}{17}+....+\frac{1}{502}-\frac{1}{507}\)
\(\frac{C}{2}=\frac{1}{7}-\frac{1}{507}=\frac{500}{3549}\)
\(\Rightarrow C=\frac{1000}{3549}\)