Phép nhân và phép chia các đa thức

H24

\(A=\dfrac{1.2+2.3+3.4+...+2016.2017}{2017\times2018}=....\)

H24
25 tháng 1 2021 lúc 18:08

Đối với dạng này ta dùng công thức \(a\cdot\left(a+1\right)=\dfrac{1}{3}\left[a\cdot\left(a+1\right)\cdot\left(a+2\right)-\left(a-1\right)\cdot a\cdot\left(a+1\right)\right]\)

Ta có:

\(1\cdot2=\dfrac{1}{3}\left(1\cdot2\cdot3-0\cdot1\cdot2\right)\)

\(2\cdot3=\dfrac{1}{3}\left(2\cdot3\cdot4-1\cdot2\cdot3\right)\)

$\cdots$

\(2016\cdot2017=\dfrac{1}{3}\left(2016\cdot2017\cdot2018-2015\cdot2016\cdot2017\right)\)

Cộng lại ta có: \(1\cdot 2 +2\cdot 3 +3 \cdot 4 +\cdots +2016\cdot 2017=\dfrac{1}{3} (2016\cdot 2017 \cdot 2018-0\cdot 1 \cdot 2)=\dfrac{1}{3}\cdot 2016\cdot 2017 \cdot 2018 \)

Thay vào $A$ thu được $A=672.$

Bình luận (1)

Các câu hỏi tương tự
TN
Xem chi tiết
AH
Xem chi tiết
HU
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
NN
Xem chi tiết
PH
Xem chi tiết
NA
Xem chi tiết
NC
Xem chi tiết