Ôn tập toán 6

PC

A=9/1*2+9/2*3+9/3*4+...9/96*99+9/99*100

H24
19 tháng 5 2017 lúc 19:55

\(A=\dfrac{9}{1.2}+\dfrac{9}{2.3}+\dfrac{9}{3.4}+...+\dfrac{9}{98.99}+\dfrac{9}{99.100}\)

\(A=9-\dfrac{9}{2}+\dfrac{9}{2}-\dfrac{9}{3}+\dfrac{9}{3}-\dfrac{9}{4}+...+\dfrac{9}{99}-\dfrac{9}{100}\)

\(A=9-\dfrac{9}{100}\)

\(A=\dfrac{891}{100}\)

Bình luận (0)
NH
19 tháng 5 2017 lúc 19:57

\(A=\dfrac{9}{1.2}+\dfrac{9}{2.3}+\dfrac{9}{3.4}+.......................+\dfrac{9}{98.99}+\dfrac{9}{99.100}\)

\(\Rightarrow A=9\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.................+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)

\(\Rightarrow A=9\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+..........+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(\Rightarrow A=9\left(1-\dfrac{1}{100}\right)\)

\(\Rightarrow A=9.\dfrac{99}{100}\)

\(\Rightarrow A=\dfrac{891}{100}\)

Bình luận (0)
MV
19 tháng 5 2017 lúc 19:58

Đề sai

\(A=\dfrac{9}{1\cdot2}+\dfrac{9}{2\cdot3}+\dfrac{9}{3\cdot4}+...+\dfrac{9}{98\cdot99}+\dfrac{9}{99\cdot100}\\ =9\cdot\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\right)\\ =9\cdot\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =9\cdot\left(1-\dfrac{1}{100}\right)\\ =9\cdot\dfrac{99}{100}\\ =\dfrac{891}{100}\)

Bình luận (0)
TM
19 tháng 5 2017 lúc 19:59

\(A=\dfrac{9}{1.2}+\dfrac{9}{2.3}+\dfrac{9}{3.4}+...+\dfrac{9}{98.99}+\dfrac{9}{99.100}\)

\(\Rightarrow A=9\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)

\(\Rightarrow A=9\left(\dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+\dfrac{4-3}{3.4}+...+\dfrac{99-98}{98.99}+\dfrac{100-99}{99.100}\right)\)

\(\Rightarrow A=9\left(\dfrac{2}{1.2}-\dfrac{1}{1.2}+\dfrac{3}{2.3}-\dfrac{2}{2.3}+...+\dfrac{100}{99.100}-\dfrac{99}{99.100}\right)\)

\(\Rightarrow A=9\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(\Rightarrow A=9.\left(1-\dfrac{1}{100}\right)=9-\dfrac{9}{100}=\dfrac{891}{100}\)

Vậy \(A=\dfrac{891}{100}\)

Bình luận (0)

Các câu hỏi tương tự
CT
Xem chi tiết
KN
Xem chi tiết
PP
Xem chi tiết
LD
Xem chi tiết
ND
Xem chi tiết
KP
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
CN
Xem chi tiết