Violympic toán 8

DA

a, Tìm GTNN của

A = x2 + 4x + 7

B = x2 + 4x - 7

b, Tìm GTLN của

M = 7 - 4x - x2

N = -4x - x2 + 7

LD
22 tháng 11 2019 lúc 21:52

a)

A=\(x^2+4x+7\)

=\(x^2+4x+4+3\)

=\(\left(x+2\right)^2+3\)

Do (x+2)2\(\ge0\)\(\Rightarrow\left(x+2\right)^2\ge3\)

Dấu ''='' xảy ra khi

\(x+2=0\Rightarrow x=-2\)

Vậy GTNN của A là A=3 tại x=-2

B=\(x^2+4x-7\)

=\(\left(x^2+4x+4\right)-11\)

=\(\left(x+2\right)^2-11\)

Do (x+2)2\(\ge0\Rightarrow\left(x+2\right)^2-11\ge-11\)

Dấu''='' xảy ra khi

\(x+2=0\Rightarrow x=-2\)

Vậy GTNN Của B là B=-11 với x=-2

b) M=\(7-4x-x^2\)

=\(-\left(7+4x+x^2\right)\)

=\(-\left(3+\left(x+2\right)^2\right)\)

=-\(\left(x+2\right)^2-3\)

Do \(\left(x+2\right)^2\ge0\Rightarrow-\left(x+2\right)^2\le0\Rightarrow-\left(x+2\right)^2-3\le-3\)

Dấu = xảy ra khi

\(x+2=0\Rightarrow x=2\)

Vậy GTNN Của M là M min =-3 tại x=2

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
Xem chi tiết
LS
Xem chi tiết
LS
Xem chi tiết
TH
Xem chi tiết