Ôn tập toán 7

AH

a) Tìm GTLN của: A = \(-9x^2+24x+1\)

b) Tìm x thuộc Z để: B= \(\frac{2016}{x^2-5x+7}\) có GTNN 

giúp e nhé mọi người chiều nay e học rồi 

HL
28 tháng 6 2016 lúc 8:28

a) A=-9x2+24x+1=-9x2+24x-16+17

=-9x2+12x+12x-16+17

=-3x.(3x-4)+4.(3x-4)+17

=(3x-4)(-3x+4)+17

=-(3x-4)(3x-4)+17

=-(3x-4)2+17 \(\le\) 17 (với mọi x)

Dấu "=" xảy ra khi x=4/3

Vậy GTLN của A là 17 tại x=4/3

 

 

Bình luận (0)
HL
28 tháng 6 2016 lúc 8:32

Câu b đề phải là tìm GTLN chứ nhỉ

Ta có: x2-5x+7= \(x^2-\frac{5}{2}x-\frac{5}{2}x+\frac{25}{4}+\frac{3}{4}=x.\left(x-\frac{5}{2}\right)-\frac{5}{2}.\left(x-\frac{5}{2}\right)+\frac{3}{4}\)

\(=\left(x-\frac{5}{2}\right)\left(x-\frac{5}{2}\right)+\frac{3}{4}=\left(x-\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)(với mọi x)

=>\(B=\frac{2016}{x^2-5x+7}\le\frac{2016}{\frac{3}{4}}=2688\)(với mọi x)

Dấu "=" xảy ra khi x=5/2

Vậy GTLN của B là 2688 tại x=5/2

Bình luận (0)
NT
28 tháng 6 2016 lúc 8:42

a, \(A=-\left(9x^2-24x-1\right)=-\left[\left(3x\right)^2-24x+16-17\right]=-\left[\left(3x\right)^2-2.3x.4+4^2-17\right]=-\left[\left(3x-4\right)^2-17\right]=-\left(3x-4\right)^2+17\le17\)

Dấu "=" xảy ra  \(\Leftrightarrow3x-4=0\Leftrightarrow3x=4\Leftrightarrow x=\frac{4}{3}\)

\(\Rightarrow MaxA=17\Leftrightarrow x=\frac{4}{3}\)

b,Bài ni hình như là B max 

 \(Bmax\Leftrightarrow\frac{2016}{x^2-5x+7}max\Leftrightarrow x^2-5x+7min\)

\(x^2-5x+7=x^2-5x+6,25+0,75=x^2-5x+2,5^2+0,75=x^2-2.x.2,5+2,5^2+0,75=\left(x-2,5\right)^2+0,75\ge0,75\)

Dấu = xảy ra \(\Leftrightarrow x-2,5=0\Leftrightarrow x=2,5\)

\(\Rightarrow Bmax=\frac{2016}{0,75}=2688\Leftrightarrow x=2,5\) 

Bình luận (0)
HN
28 tháng 6 2016 lúc 8:52

a)    A = - 9x^2 + 24x + 1

          = - ( 9x^2 -24x - 1)

          = - (3x -4 )^2 + 15

Ta có:     (3x-4)^2 >= 0 với mọi x ϵ R

       =>  -(3x-4)^2 <=0 với mọi x ϵ R

      =>   -(3x+4)^2 + 15 <=15 với mọi x ϵ R

=> A<=15  => A max =15 khi x=4/3

Bình luận (0)