$3. Dấu của tam thức bậc hai

QL

a) Quan sát Hình 19 và cho biết dấu của tam thức bậc hai \(f\left( x \right) = {x^2} + 2x + 1\)

b) Quan sát Hình 20 và cho biết dấu của tam thức bậc hai \(f\left( x \right) =  - {x^2} + 4x - 4\)

c) Từ đó rút ra mối liên hệ về dấu của tam thức bậc hai \(f\left( x \right) = a{x^2} + bx + c\left( {a \ne 0} \right)\) với dấu của hệ số a trong trường hợp \(\Delta  = 0\).

HM
23 tháng 9 2023 lúc 11:41

a) Từ đồ thị ta thấy \({x^2} + 2x + 1 \ge 0\forall x\)

Và \({x^2} + 2x + 1 > 0\forall x \in \mathbb{R}\backslash \left\{ { - 1} \right\}\)

b) Từ đồ thị ta thấy \( - {x^2} + 4x - 4 \le 0\forall x\)

Và \( - {x^2} + 4x - 4 < 0\forall x \in \mathbb{R}\backslash \left\{ { - 2} \right\}\)

c) Nếu \(\Delta  = 0\) thì \(f\left( x \right)\) cùng dấu với dấu của hệ số a, với mọi \(x \in \mathbb{R}\backslash \left\{ {\frac{{ - b}}{{2a}}} \right\}\)

Bình luận (0)

Các câu hỏi tương tự
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết