a) n+3 ⋮ n-1
=> (n+3)-(n-1) ⋮(n-1)
=> (n+3-n+1) ⋮(n-1)
=> 4 ⋮(n-1)
=> (n-1) ∈ Ư(4)= { -4;-2;-1;1;2;4}
=> n ∈ { -3,-1;0;2;3;5}
b)4n+3 ⋮ 2n+1
vì (2n+1) ⋮ 2n+1
=> 2(2n+1) ⋮ 2n+1
=> (4n+2) ⋮ 2n+1
=> (4n+3)-(4n+2) ⋮ 2n+1
=> (4n+3-4n-2) ⋮ 2n+1
=> 1 ⋮ 2n+1
=> (2n+1) ∈ Ư(1)={-1;1}
ta có bảng sau
2n+1 | -1 | 1 |
n | -1 | 0 |
vậy n ∈ {-1;0}