Ôn tập toán 8

DN

A =        \(\left(\frac{1}{x+1}-\frac{2}{x-1}-\frac{x+5}{1-x^2}\right):\frac{2x+1}{x^2-1}\)

a) Tìm tập xác định

b) Rút gọn A

c) x = ? để A < 0 , A > 0

NJ
6 tháng 8 2016 lúc 9:21

\(a,ĐKXĐ:x\ne\pm1;x\ne-\frac{1}{2}\)
\(b,A=\left(\frac{1}{x+1}-\frac{2}{x-1}-\frac{x+5}{1-x^2}\right):\frac{2x+1}{x^2-1}\)
\(A=\left[\frac{x-1}{\left(x+1\right)\left(x-1\right)}-\frac{2\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{x+5}{\left(x+1\right)\left(x-1\right)}\right]:\frac{2x+1}{\left(x+1\right)\left(x-1\right)}\)
\(A=\left[\frac{x-1-2x-2+x+5}{\left(x+1\right)\left(x-1\right)}\right]:\frac{2x+1}{\left(x+1\right)\left(x-1\right)}\)

\(A=\frac{2}{\left(x+1\right)\left(x-1\right)}.\frac{\left(x+1\right)\left(x-1\right)}{2x+1}\)
\(A=\frac{2}{2x+1}\)
\(c,Để:A>0\)
\(\Rightarrow2x+1>0\)
\(\Rightarrow x>-\frac{1}{2}\)
\(Để:A< 0\)
\(\Rightarrow2x+1< 0\)
\(\Rightarrow x< -\frac{1}{2}\)
Vậy \(x>-\frac{1}{2}\) và \(x\ne1\) thì A>0
      \(x< -\frac{1}{2}\) và \(x\ne-1\) thì A<0

Bình luận (0)
NA
6 tháng 8 2016 lúc 9:06

Hỏi đáp Toán

Bình luận (0)
TL
6 tháng 8 2016 lúc 8:53

a)\(ĐK:x\ne-1;x\ne1;x\ne-\frac{1}{2}\)

b) \(A=\left(\frac{1}{x+1}-\frac{2}{x-1}-\frac{x+5}{1-x^2}\right):\frac{2x+1}{x^2-1}\)

\(=\left[\frac{x-1-\left(x+1\right)+x+5}{x^2-1}\right]\cdot\frac{x^2-1}{2x+1}\)

\(=\frac{x-1-x-1+x+5}{x^2-1}\cdot\frac{x^2-1}{2x+1}\)

\(=\frac{x+3}{2x+1}\)

 

Bình luận (0)

Các câu hỏi tương tự
DN
Xem chi tiết
DN
Xem chi tiết
DN
Xem chi tiết
DN
Xem chi tiết
DN
Xem chi tiết
DN
Xem chi tiết
DN
Xem chi tiết
DN
Xem chi tiết
DN
Xem chi tiết