bài 1:giải các pt sau:
a/\(\frac{1-x}{x+1}\)+3=\(\frac{2x+3}{x+1}\)
b/\(\frac{\left(x+2\right)^2}{2x-3}-1=\frac{x^2+10}{2x-3}\)
c/\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
d/\(\frac{1-6x}{x-2}+\frac{9x+4}{x+2}=\frac{x\left(3x-2\right)+1}{x^2-4}\)
e/\(\frac{12}{1-9x^2}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\)
f\(\frac{x+4}{x^2-3x+2}+\frac{x+1}{x^2-4x+3}=\frac{2x+5}{x^2-4x+3}\)
Dạng 1: Phương trình bậc nhất
Bài 1: Giải các phương trình sau :
a) 0,5x (2x - 9) = 1,5x (x - 5)
b) 28 (x - 1) - 9 (x - 2) = 14x
c) 8 (3x - 2) - 14x = 2 (4 - 7x) + 18x
d) 2 (x - 5) - 6 (1 - 2x) = 3x + 2
e) \(\frac{x+7}{2}-\frac{x-3}{5}=\frac{x}{6}\)
f) \(\frac{2x-3}{3}-\frac{5x+2}{12}=\frac{x-3}{4}+1\)
g) \(\frac{x+6}{2}+\frac{2\left(x+17\right)}{2}+\frac{5\left(x-10\right)}{6}=2x+6\)
h) \(\frac{3x+2}{5}-\frac{4x-3}{7}=4+\frac{x-2}{35}\)
i) \(\frac{x-1}{2}+\frac{x+3}{3}=\frac{5x+3}{6}\)
j) \(\frac{x-3}{5}-1=\frac{4x+1}{4}\)
Dạng 2: Phương trình tích
Bài 2: Giải phương trình sau :
a) (x + 1) (5x + 3) = (3x - 8) (x - 1)
b) (x - 1) (2x - 1) = x(1 - x)
c) (2x - 3) (4 - x) (x - 3) = 0
d) (x + 1)2 - 4x2 = 0
e) (2x + 5)2 = (x + 3)2
f) (2x - 7) (x + 3) = x2 - 9
g) (3x + 4) (x - 4) = (x - 4)2
h) x2 - 6x + 8 = 0
i) x2 + 3x + 2 = 0
j) 2x2 - 5x + 3 = 0
k) x (2x - 7) - 4x + 14 = 9
l) (x - 2)2 - x + 2 = 0
Dạng 3: Phương trình chứa ẩn ở mẫu
Bài 3: Giải phương trình sau :
\(\frac{90}{x}-\frac{36}{x-6}=2\) | \(\frac{3}{x+2}-\frac{2}{x-3}=\frac{8}{\left(x-3\right)\left(x+2\right)}\) |
\(\frac{1}{x}+\frac{1}{x+10}=\frac{1}{12}\) | \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\) |
\(\frac{x+3}{x-3}-\frac{1}{x}=\frac{3}{x\left(x-3\right)}\) | \(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{-7}{6\left(x+5\right)}\) |
\(\frac{3}{x+2}-\frac{2}{x-2}+\frac{8}{x^2-4}=0\) | \(\frac{x}{x+1}-\frac{2x-3}{1-x}=\frac{3x^2+5}{x^2-1}\) |
bài 1 giải phương trình
a) (2x+3)\(^2\)-3(x-4)(x+4)=\(\left(x-2\right)^2\)+1
b)(3x-2) (9x\(^2\)+6x+4)-(3x-1) (9x\(^2\)+3x+1)=x-4
c)x (x-1) -(x-3) (x+4)=5x
d) (2x+1)(2x-1)=4x(x-7)-3x
bài 2 giải phương trình
a)\(\frac{x}{10}-\left(\frac{x}{30}+\frac{2x}{45}\right)=\frac{4}{5}\)
b)\(\frac{10x-5}{18}+\frac{x+3}{12}=\frac{7x+3}{6}+\frac{12-x}{9}\)
c)\(\frac{10x+3}{8}=\frac{7-8x}{12}\)
d)\(\frac{x+4}{5}-x-5=\frac{x+3}{3}-\frac{x-2}{2}\)
Giải các PT sau :
a,\(\frac{1-6x}{x-2}+\frac{9x+4}{x+2}=\frac{x\left(3x-2\right)+1}{\left(x+2\right)\left(x-2\right)}\)
b,(2 - 3x) (x + 11) = (3x - 2) (2 - 5x)
c,\(\frac{3x-2}{6}-5=\frac{3-2\left(x+7\right)}{4}\)
d,\(\frac{x}{x-3}+\frac{x}{x +1}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)
e,\(\frac{x+1}{5}+\frac{x+2}{4}=\frac{x+3}{3}+\frac{x+4}{2}\)
bài 1:giải các phương trình sau:
a/2,3x-2.(0,7+2x)=3,6-1,7x
b/\(\frac{4}{3}\)x-\(\frac{5}{6}\)=\(\frac{1}{2}\)
c/\(\frac{x}{10}\)-(\(\frac{x}{30}\)+\(\frac{2x}{45}\))=\(\frac{4}{5}\)
d/\(\frac{10x+3}{8}\)=\(\frac{7-8x}{12}\)
e/\(\frac{10x-5}{18}\)+\(\frac{x+3}{12}\)=\(\frac{7x+3}{6}\)-\(\frac{12-x}{9}\)
f/\(\frac{x+4}{5}\)-x-5=\(\frac{x+3}{2}\)-\(\frac{x-2}{2}\)
g/\(\frac{2-x}{4}\)=\(\frac{2.\left(x+1\right)}{5}\)-\(\frac{3.\left(2x-5\right)}{10}\)
h/\(\frac{x+2}{3}\)+\(\frac{3.\left(2x-1\right)}{4}\)-\(\frac{5x-3}{6}\)=x+\(\frac{5}{12}\)
bài 2:giải các phương trình sau:
a/5.(x-1).(2x-1)=3.(x+8).(x-1)
b/(3x-2).(x+6).(\(^{x^2}\)+5)=0
c/(3x-2).(9\(^{x^2}\)+6x+4)-(3x-1).(9\(^{x^2}\)-3x+1)=x-4
d/x.(x-1)-(x-3).(x+4)=5x
e/(2x+1).(2x-1)=4x.(x-7)-3x
bài 1:giải các phương trình sau:
a/\(\frac{1-x}{x+1}\)+3=\(\frac{2x+3}{x+1}\)
b/\(\frac{\left(x+2\right)^2}{2x-3}\)-1=\(\frac{x^2+10}{2x-3}\)
c/\(\frac{1}{x+1}\)-\(\frac{5}{x-2}\)=\(\frac{15}{\left(x+1\right)\left(2-x\right)}\)
d/\(\frac{1-6x}{x-2}\)+\(\frac{9x+4}{x+2}\)=\(\frac{x\left(3x-2\right)+1}{x^2-4}\)
e/\(\frac{12}{1-9x^2}\)=\(\frac{1-3x}{1+3x}\)-\(\frac{1+3x}{1-3x}\)
f/\(\frac{x+4}{x^2-3x+2}\)+\(\frac{x+1}{x^2-4x+3}\)=\(\frac{2x+5}{x^2-4x+3}\)
bài 2:tìm giá trị của m sao cho:
a/phương trình(2x+1)(9x+2m)-5(x+2)=40 có nghiệm x=2
b/phương trình \(^{x^3}\)+\(^{mx^2}\)-4x-4=0 có một nghiệm x =1
1. giải phương trình.
a. (2x+1)(x-1)=0
b. \(\left(x+\frac{2}{3}\right)\left(x-\frac{1}{2}\right)\) (x+2020)=0
c. (3x-1)(2x-3)(2x-3)(x+5)=0
d. 3x-15=2x(x-5)
e. x2-2x+1=0
f. x2+x+\(\frac{1}{4}\) =0
g. x2-3x-4=0
h. (x+1)(x+4)=(2-x)(x+2)
giải ác phương trình sau:
1)\(\frac{x+2}{2x-4}-\frac{4x}{x^2-4}=0\)
2)\(\frac{x}{x-1}-\frac{5x-3}{x^2-1}=0\)
3)\(\frac{1}{x-3}-\frac{4}{x+3}=\frac{3x}{9-x^2}\)
4)\(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)
5)\(\frac{-3}{2x}-\frac{x+1}{x+2}=\frac{-3}{x\left(x+2\right)}\)
6)\(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)
Giải phương trình:
1. \(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
2. \(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
3. \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\)
4. \(\frac{x+3}{2}-\frac{x-1}{3}=\frac{x+5}{6}+1\)
5. \(\frac{x-4}{5}-\frac{3x-2}{10}-x=\frac{2x-5}{3}-\frac{7x+2}{6}\)
6. \(\frac{\left(x+2\right)\left(x+10\right)}{3}-\frac{\left(x+4\right)\left(x+10\right)}{12}=\frac{\left(x-2\right)\left(x+4\right)}{4}\)
7. \(\frac{\left(x+2\right)^2}{8}-2\left(2x-1\right)=25+\frac{\left(x-2\right)^2}{8}\)
8.\(\frac{7x^2-14x-5}{5}=\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}\)
9. \(\frac{\left(2x-3\right)\left(2x+3\right)}{8}=\frac{\left(x-4\right)^2}{6}+\frac{\left(x-2\right)^2}{3}\)
10. \(\frac{x+1}{35}+\frac{x+3}{33}=\frac{x+5}{31}+\frac{x+7}{29}\)